Supporting Information

Surface Ions Transfer Growth of Ternary $CdS_{1-x}Se_x$ Quantum Dots and Their Electron Transport Modulations

Zhenhua Chen, Wenqin Peng, Kun Zhang, Jing Zhang, Masatoshi Yanagida and Liyuan

Han*

Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047, Japan.

* Corresponding author: <u>han.liyuan@nims.go.jp (</u>L. Y. Han); <u>chen.zhenhua@nims.go.jp</u> (Z. H. Chen)

Figure S1. EDX spectrum of ternary CdS_{1-x}Se_x QDs.

Figure S2. Tauc's law employed to evaluate the optical bandgaps of the $CdS_{1-x}Se_x$ QDs.

Figure S3. Normalized absorbance spectrum of as-prepared and annealed $CdS_{1-x}Se_x$ QDs.

Figure S4. Cross-section image and corresponding elemental linescan mapping of $CdS_{1-x}Se_x$ QDs sensitized TiO₂ photoelectrode.

Figure S5. EIS spectra and equivalent circuit CdS, CdS_{1-x}Se_x, and CdSe QDSSCs.

Figure S1. EDX spectrum of ternary $CdS_{1-x}Se_x$ QDs, with specific elemental peaks. These peaks are as follows: Titanium K_{α} =4.51 keV and K_{β} =4.93 keV, Oxygen K_{α} =0.52 keV, Cadmium L_{α} =3.13 keV and L_{β} =3.31 keV, Surful K_{α} =2.37 keV and Selenium L_{α} =1.37 keV. The value of Se/(S+Se) is 0.26, 0.43, 0.58 and 0.72 for CdS_{0.74}Se_{0.26} QDs, CdS_{0.57}Se_{0.43} QDs, CdS_{0.42}Se_{0.58} QDs and CdS_{0.28}Se_{0.72} QDs.

Figure S2. Tauc's law was employed to evaluate the optical bandgaps of the $CdS_{1-x}Se_x$ QDs. The plots of $(\alpha h v)^2$ Vs. hv are presented in for pristine CdS QDs (curve I) and $CdS_{1-x}Se_x$ QDs with Se content of 0.26, 0.43, 0.58, 0.72 and 1 (curve II to VI), where α is the absorption coefficient, **hv** is photon energy, E_g is the energy band gap, and A is a constant.^{1,2} The illustrate estimation of the bandgaps have values of 2.82, 2.48, 2.62, 2.32, 2.18 and 2.06 eV, respectively.

Figure S3. Normalized absorbance spectrum of as-prepared and annealed $CdS_{1-x}Se_x$ QDs. The red shift of the spectrum can be observed when the QDs were annealed at $300^{\circ}C$, due to the dissolve and enlarger of QDs, while it is no obvious shift when they were annealed at $230^{\circ}C$. The as-prepared QDs in RT have two individual peaks which attribute to both CdS and CdSe. The peak was merged after annealing at $230^{\circ}C$ due to lattice charge and formation of ternary alloy structure.

Figure S4. (a) Cross-section image and (b) corresponding elemental linescan mapping of 15 μ m CdS_{1-x}Se_x QDs sensitized TiO₂ photoelectrode. The line scan of Si, S, Se, Cd and Ti were conducted from bottom-to-up, as the arrow indicated in figure S4(a). The obvious higher concentration of the Cd elements within the 10 μ m dense TiO₂ film is attributed to the more efficient loading of QDs in dense TiO₂ films. The dramatically increasing of Si is attributed to the bottom glass substrate.

Figure S5. EIS spectra of CdS, $CdS_{1-x}Se_x$, and CdSe QDSSCs measured under 100 mW/cm² illumination. The inset is a scheme of equivalent circuit used to model the experimental data.

References

- 1. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 1966, 15, 627.
- 2. R. W. Collins, C. Y. Huang, Phys. Rev. B 1986, 34, 2910.