Supporting Information of:

PEG-capped, lanthanide doped GdF₃ nanoparticles: luminescent and T₂ contrast agents for optical and MRI multimodal imaging

Tiziana Passuello^a, Marco Pedroni^a, Fabio Piccinelli^a, Stefano Polizzi^b, Pasquina Marzola^c, Stefano Tambalo^c, Giamaica Conti^c, Donatella Benati^d, Fiorenzo Vetrone^e, Marco Bettinelli^a, Adolfo Speghini^a

^aDipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37134 Verona, Italy.

^bDipartimento di Chimica Molecolare e Nanosistemi, Università Ca' Foscari Venezia and INSTM, UdR Venezia, Via Torino 155/b, 30172, Venezia – Mestre, Italy ^cDipartimento di Informatica, Strada Le Grazie 15, I-37134 Verona, Italy.

^dDipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, Università di

Verona, I-37134 Verona, Italy.

^eInstitut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, QC J3X 1S2, Canada.

Figure SF1. XRPD pattern (black line) and Rietveld refinement (red line) for PEG-capped GdF_3 : Er^{3+} , Yb^{3+} NPs (R_w =0.0801). Lower line: residuals between experimental and calculated data.

Figure SF2. XRPD pattern for uncapped GdF₃: Er^{3+} , Yb³⁺ NPs. Similar pattern has been obtained for the GdF₃: Tm^{3+} , Yb³⁺ NPs.

Figure SF3. X-ray powder diffraction patterns for $\text{Er}^{3+}/\text{Yb}^{3+}$ doped GdF₃ NPs prepared under different heat treatments: (a) 140 °C; (b) 160 °C; (c) 180 °C. Similar results have been found for the Tm³⁺/Yb³⁺ doped GdF₃ NPs.

Figure SF4. Short edge size distribution for the GdF_3 : Tm^{3+} , Yb^{3+} NPs. Similar distribution is found for the GdF_3 : Er^{3+} , Yb^{3+} NPs.

Figure SF5. Aspect ratio distribution for the GdF_3 : Tm^{3+} , Yb^{3+} NPs. A similar distribution is found for the GdF_3 : Er^{3+} , Yb^{3+} NPs.

Figure SF6. Upconversion spectrum (λ_{exc} =980 nm) for the uncapped GdF₃:Er³⁺,Yb³⁺ NPs in powder form. A similar spectrum has been obtained for the PEG-capped GdF₃:Er³⁺,Yb³⁺ NPs.

Figure SF7. Upconversion power study (λ_{exc} =980 nm) for water dispersion of (a) GdF₃:Er³⁺, Yb³⁺ (0.60 g/l) (green: λ_{em} =550 nm, red: λ_{em} =660 nm); (b) GdF₃:Tm³⁺, Yb³⁺ (0.47 g/l) (λ_{em} =810 nm).

Figure SF8. Schematic representation of upconversion processes for $\text{Er}^{3+}/\text{Yb}^{3+}$ ions (λ_{exc} =980 nm).

Figure SF9. Schematic representation of upconversion processes for Tm^{3+}/Yb^{3+} ions ($\lambda_{exc}=980$ nm).