Supporting information

In-situ loading of ultra-small Cu₂O particles on TiO₂ nanosheets to enhance the visible-light photoactivity

Lichen Liu, ^{a,b} Xianrui Gu^{a,b} Chuanzhi Sun,^c Hao Li,^{a,c} Yu Deng,^b* Fei Gao,^b* Lin Dong^{a,b}*

^a Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China

^b Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China

^c Department of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China

* To whom correspondence should be addressed.

Tel.: +86 25 83592290; fax: +86 25 83317761. E-mail address: <u>dengyu@nju.edu.cn</u> (Yu Deng) E-mail address: <u>gaofei@nju.edu.cn</u> (Fei Gao) E-mail address: <u>donglin@nju.edu.cn</u> (Lin Dong)

Fig. S1 Raman spectra of pure TiO_2 nanosheets (TiO_2 -NS) and Cu_2O/TiO_2 nanosheets (CT nanosheets).

Fig. S2 Structural and morphological characterizations of N-doped TiO₂ nanosheets with {001} facets exposed. (a) XRD pattern, (b) UV-vis diffuse reflectance spectra, (c-d) TEM images.

The XRD pattern of N-doped TiO₂ nanosheets (N-TiO₂-NS) shows typical diffraction pattern of anatase (Fig.S2a), indicating they have the same crystal structure with TiO₂-NS and CT-NS. The UV-vis spectrum of N-TiO₂-NS is displayed in Fig. S2b. Obviously, the N-doped sample shows a enhanced absorption in 400~500 nm compared to pure TiO₂ nanosheets, which can be ascribed to the N-doping.

We use TEM to investigate the morphology of N-TiO₂-NS. In Fig. S2c, these N-doped TiO₂ nanosheets are rectangular nanosheets with side length of ca. 20~50 nm and thickness of ca. 4~10 nm. The HRTEM image Fig. S2d shows that the lattice spacing parallel to the top and bottom facets is ~0.235nm, corresponding to the {001} planes of anatase TiO₂. The morphology of N-TiO₂-NS is quite similar to that of TiO₂-NS and CT-NS, indicating that N-TiO₂-NS is a suitable visible-light catalyst for comparison to confirm the improvement in visible-light activity introduced by loading Cu₂O nanoparticles.