Electronic Supplementary Information

Facile Synthesis of Novel Tunable Highly porous CuO Nanorods for High Rate

Lithium Battery Anode with Realized Long Cycle Life and High Reversible

Capacity

Linlin Wang, ^a Huaxu Gong, ^a Caihua Wang, ^a Dake Wang, ^a Kaibin Tang*^a and Yitai

Qian^{a,b}

Division of Nanomaterials and Chemistry Hefei National Laboratory for Physical Sciences at the Microscale. Department of Chemistry, University of Science and Technology of China, Hefei 230026, P.R. China. E-mail: kbtang@ustc.edu.cn. Phone: 86-551-3601791.

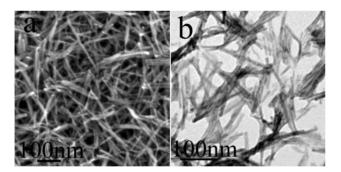
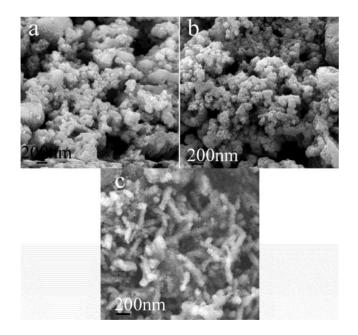



Fig. S1 (a) SEM image of Cu(OH)₂ nanorods; (b) TEM image of Cu(OH)₂ nanorods

Fig. S2 The results obtained by $Cu(OH)_2$ nanorods directly calcined at different

temperatures

Sample	Heat-treatment temperature(⁰ C)	The target products
$Cu(OH)_2$ nanorods	50	Cu(OH) ₂ nanorods
	100	Cu(OH) ₂ nanorods
	200	CuO particles (most)+ CuO nanorods (little)
	400	CuO particles

(c) sample C.

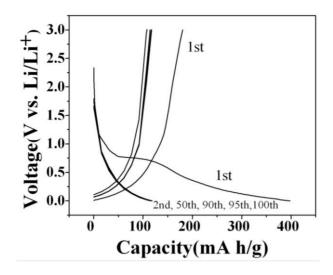


Fig. S4 The discharge-charge profiles of acetylene black.