Supplementary Material (ESI) for Nanoscale

Two-photon excited fluorescence of silica nanoparticles loaded with fluorene-based monomer and its cross-conjugated polymer: their application to cell imaging

Laura Aparicio-Ixta¹, Gabriel Ramos-Ortiz^{1*}, Juan L. Pichardo-Molina^{1,} José Luis Maldonado¹, Mario Rodríguez¹, Víctor M. Tellez-Lopez², Daniel Martínez-Fong^{2,3}, Mikhail G. Zolotukhin⁴, Serguei Fomine⁴, Marco. A. Meneses-Nava¹, Oracio Barbosa-García¹

 ¹Centro de Investigaciones en Óptica A.C., A.P. 1-948, 37000 León, Gto., Mexico
²Departamento de Fisiología, Biofísica y Neurociencias, ³Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV, Apdo. Postal 14-740, 07000 México, D.F., Mexico
⁴Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Apartado Postal 70-360, CU, Coyoacán 04510, México D. F., Mexico
*Corresponding author: garamoso@cio.mx

Charge transfer (CT) character of M1 and P1

Figure S1 shows the model used for **M1** in DFT calculations and the most important molecular orbitals involved in the electronic transitions. The long wavelength absorption maxima $(S_0 \rightarrow S_1)$ resulted to be $\lambda_{max}=397$ nm (415 nm experimentally). This transitions shows a significant charge transfer (CT) character, where the charge is transferred from π orbitals of fluorene fragment to π^* orbitals of benzothiadiazole moiety. Broad and intense absorption maxima for **M1** in the range 280-340 nm can be attributed to $S_0 \rightarrow S_2$ and $S_0 \rightarrow S_3$ transitions. In the case of $S_0 \rightarrow S_3$, the transition has high oscillator strength (1.22) and involves π orbitals extended over entire molecule (HOMO \rightarrow LUMO+1). On the other hand, the weaker $S_0 \rightarrow S_2$ transition (HOMO-1 \rightarrow LUMO) has CT character similar to $S_0 \rightarrow S_3$.

Figure S1. The most important excitations contributing to the transitions in M1.

Figure S2 shows the model used for **P1** in DFT calculations. In this case **P1** was modelled using an oligomer as depicted in the figure. The long wavelength absorption maxima $(S_0\rightarrow S_1)$ involves mostly four molecular orbitals (HOMO-1, HOMO, LUMO, LUMO+1, LUMO+2 and LUMO+3) as it has a charge transfer (CT) character similar to **M1**. It is noteworthy to note than $S_0\rightarrow S_2$ transition also has CT character and lies very close to $S_0\rightarrow S_1$ (395 mn), contributing to the long wave absorption of **P1**, but with very weak oscillator strength. For short wavelength absorption, the most intense transition is S_0 - S_5 (λ_{max} =291, oscillator strength 2.40), corresponding to a combination of HOMO-1 \rightarrow LUMO+3 and HOMO \rightarrow LUMO+2, with no CT character.

Figure S2. The most important excitations contributing to the transitions of an oligomer structure used a s model for **P1**.

Figure S3. Nanoparticles size distribution obtained through DLS for: upper) **P1**-NPs suspension with CTAB concentration of 0.08 mM, bottom) **P1**-SNPs suspension processed with aerosol-OT at concentration of 50 mM.

Figure S4. Normalized TPEF spectra for a) monomer **M1** and b) polymer **P1** in solutions and aqueous suspensions. Excitation: femtosecond pulses at 750 nm