Supporting Information

Fabrication and design equation of film-type largescale interdigitated supercapcitor chips

Inho Nam, Gil-Pyo Kim, Soomin Park, Junsu Park, Nam Dong Kim and Jongheop Yi

World Class University Program of Chemical Convergence for Energy & Environment, School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Republic of Korea.

Fax: +82 2 888 0708; Tel: +82 2 880 7438;

E-mail: jyi@snu.ac.kr

Experimental Details

A large-scale interdigitated supercapacitor chip based on a hierarchical MnO₂ structure was generated on a silicon wafer. The surface of the silicon wafer was wet oxidized to produce a silicon oxide layer (SHF-150, Seltron) and a positive photoresist layer was subsequently spin coated and developed on the oxidized layer using a photomask (MA-6, Karl-suss). A Cr layer and Pt layer were sequentially thermally evaporated onto the same layer as the adhesion layer and a supercapacitor current collector was applied (ALPS-C03, alpha plus). The hierarchical MnO₂ structure was electrodeposited on the surface of the Pt layer. For electrodeposition, the wafer was immersed in aqueous solutions of Mn(NO₃)₂ (0.02 M) and NaNO₃ (0.1 M) (WPG100, Wonatech).¹⁵ The wafer was used as the working electrode, and a Pt electrode was used as the counter electrode, Ag/AgCl electrode used as the reference electrode, and a constant current of 100 μ A/cm² was applied (15 – 120 min deposition time). After lifting off the photoresist with acetone followed by an overnight drying in a vacuum oven at 80 °C, a large-scale interdigitated patterned hierarchical MnO₂ structure was finally produced. For the full cell supercapacitor chip without an external electrolyte, a cover slip was attached to the fabricated supercapacitor chip and a 2 M Li₂SO₄ electrolyte solution was injected into the chip using microfluidics. Scanning electron microscopy images of the microelectrodes of the interdigitated supercapacitor chip were obtained using a field-emission scanning electron microscope (AURIGA, Carl Zeiss) and cyclic voltammograms of the interdigitated supercapacitor chips at various sweep-rates (10 mV - 5,000 mV) and a potential window of 0 V - 0.8V were analyzed (Iviumstat, Ivium).

Supplementary Figures

Fig. S1. Pattern design and linear dimensions of large-scale interdigitated supercapacitor chip with 40 interdigital electrodes. Each microelectrode was 200 μ m in width and 1 cm in length. The electrodes were interspaced by 50 μ m. Occupied area of the interdigital electrodes was 1 cm \times 1 cm. This area can be increased up to the area limit of the electrochemical deposition method (size of counter electrode).

Fig. S2. (a), (b), (c), Cyclic voltammograms (CV) for large-scale interdigitated-supercapacitor chips and conventional sandwich type supercapacitors based on a hierarchical MnO_2 structure (60 min deposition time). Sweep rates were 10 mV s⁻¹ (a), 50 mV s⁻¹ (b), and 100 mV s⁻¹ (c). (d) Capacitance versus sweep-rate for large-scale interdigitated supercapacitor chip and conventional sandwich-type supercapacitor based on a hierarchical MnO_2 structure. The electrolyte was a 2 M Li₂SO₄ solution at room temperature.

Fig. S3. (a) Details of the procedure used to fabricate a large-scale interdigitated supercapacitor chip based on a hierarchical MnO_2 structure microelectrode. (b) SEM images of the interdigitated patterned microelectrode based on a hierarchical MnO_2 structure (120 min deposition time) (scale bar : 200 µm, 100 µm and 5 µm).

Fig. S4. Galvanostatic charge-discharge (voltage versus time) curves at four different deposition times. The deposition times for MnO_2 were 15 min, 30 min, 60 min, and 120 min, respectively. The current density was 40 μ A per deposition time (h).

Fig. S5. Galvanostatic charge-discharge (voltage versus time) curves at four different current densities. The deposition time of MnO_2 was 15 min. The current densities were 8 μ A, 20 μ A, 40 μ A, and 80 μ A per deposition time (h), respectively.

Fig. S6. Capacitance versus sweep-rate at the four different deposition times for correlation between calculated capacitance (C_{eqn} , line) and experimental capacitance (C_{exp} , point). C_{eqn} was estimated according to $C = -At^{1/2}ln(Bvt^{1/2})$, where A 1.82×10^{-6} F s⁻¹ and B 5.26×10^{-3} V and C_{exp} at seven different sweep-rates between 10 and 5,000 mV s⁻¹ and four different deposition times. The deposition times used were 15 min (a), 30 min (b), 60 min (c) and 120 min (d).

Fig. S7. Capacitance versus deposition time at seven different sweep rates. The sweep rates were 10 mV s⁻¹, 50 mV s⁻¹, 100 mV s⁻¹, 500 mV s⁻¹, 2,500 mV s⁻¹, and 5,000 mV s⁻¹.

Fig. S8. Basic *RC* circuit for linear potential sweep method of supercapacitor system where *R* is resistance of equivalent circuit and *C* is capacitance. In this basic *RC* circuit, $E = E_R + E_C = iR + q/C$ where *E* is potential, *q* is electrical charge. In linear potential sweep method, E = vt where *v* is sweep rate and *t* is discharge time, therefore these equations can be combined to vt = R(dq/dt) + q/C. In conclusion, if current attains a steady-state, i = vC as is in equation (3) in the main text.³¹

Fig. S9. Plot for specific capacitance versus mass calculated according to equation (10), $C_{sp} = -A'm^{-1/2}ln(B'vm^{1/2})$. The sweep rate was assumed to be constant.