Supporting Information

Unzipping the Role of Chirality in Nanoscale Self-Assembly of Tripeptide **Hydrogels**

Silvia Marchesan,*^a Lynne Waddington,^a Christopher D. Easton,^a David A. Winkler,^{a, b} Liz Goodall,^a John Forsythe,^c and Patrick G. Hartley^a

a. CSIRO Materials Science and Engineering, Bayview Avenue, Clayton VIC 3168, Australia.

b. Monash Institute of Pharmaceutical Sciences, 384 Royal Pde. Parkville 3052, Australia.

c. Monash University, Department of Materials Engineering, PO Box 69M, VIC 3800, Australia.

*Silvia.Marchesan@csiro.au

Supporting Information Table of Contents

I.	Analytical Characterization of Peptides	
	a. LFF	S2
	b. ^D LFF	S4
II.	TEM images of ^D LFF globular structures with and without short fibers	S6
III.	Cryo-TEM image of LFF globules	S6
IV.	Confocal Thioflavin T fluorescence image for aged globules of LFF	S7
V.	Confocal image for Thioflavin T-stained samples of LFF showing crystal needles	
	aligning into plates.	S7
VI.	TEM images with negative staining of LFF	S 8
VII.	Cryo-TEM image detail showing globules for LFF superimposed on a crystal plate	S 8
VIII.	d spacings from XRD diffraction analysis	S9
IX.	Theoretical molecular distances from molecular modelling	S 9

I – Analytical Characterization of Peptides

a. L-Leu-L-Phe-L-Phe

¹H-NMR (400 MHz, DMSO, TMS): δ 8.65 (d, J = 8 Hz, 1H, NH), 8.42 (d, J = 8 Hz, 1H, NH), 8.03 (s (br), 3H, NH₃⁺), 7.23-7.14 (m, 10H, Ar), 4.55 (ddd, J = 4 Hz, 8 Hz, 8 Hz, 1H, αCH), 4.42 (ddd, J = 4 Hz, 8 Hz, 8 Hz, 1H, αCH), 3.69 (m, 1H, αCH), 3.04 (dd, J = 8 Hz, Jgem = -14 Hz, 1H, βCH₂), 2.95 (dd, J = 8 Hz, Jgem = -14 Hz, 1H, βCH₂), 2.88 (dd, J = 10 Hz, Jgem = -14 Hz, 1H, βCH₂), 1.57 (m, 1H, γCH), 1.45 (m, 2H, βCH₂), 0.83 (d, J = 4 Hz, 3H, CH₃), 0.81 (d, J = 4 Hz, 3H, CH₃). ¹³C-NMR (100MHz, DMSO, TMS): δ (ppm) 173.1, 171.1, 169.4 (3 x CO); 137.8 (1C), 129.6 (2C), 129.5 (2C), 128.6 (2C), 128.5 (2C), 126.9 (1C), 126.8 (1C), (10 x Ar); 54.6, 53.9, 51.1 (3 x αC); 40.6 (1 x CH); 39.2, 37.1 (2 x βCH₂); 23.8, 23.3, 21.9 (γCH, 2 x CH₃). ESI-MS: m/z 426.1 (M+H)⁺ C₂₄H₃₁N₃O₄ requires 426.2.

HPLC

ESI-MS

		1						
							_	1
					DN	1SO		
						cetone		
	11					10		
		1		AA A		*	1	
					Indefine	1.		n_
	.0 85 8.0 7.5	7.0 6.5 6.0	5.5 5.0	4.5 4.0	3.5 3.0 2	.5 2.0	1.5 1.0	0.5
1.5 11.0 10.5 10.0 9.5 9	.0 8.5 8.0 7.5	7.0 6.5 6.0 PP	5.5 5.0 m	4.5 4.0	3.5 3.0 2	.5 2.0	1.5 1.0	0.5
^{1.5} 11.0 10.5 10.0 9.5 9	.0 8.5 8.0 7.5	7.0 6.5 6.0 pp	5.5 5.0 m	4.5 4.0	3.5 3.0 2	.5 2.0	1.5 1.0	0.5
¹⁵ 11.0 10.5 10.0 9.5 9	.0 8.5 8.0 7.5	7.0 6.5 6.0 pp	5.5 5.0 m	4.5 4.0	3.5 3.0 2	5 2.0	1.5 1.0	0.5
¹³ C-NMR of LFF	0 8.5 8.0 7.5	7.0 6.5 6.0 pp	5.5 5.0	4.5 4.0	3.5 3.0 2	.5 2.0	1.5 1.0	0.5
¹³ C-NMR of LFF	0 8.5 8.0 7.5	7.0 6.5 6.0 pp	5.5 5.0	4.5 4.0	3.5 3.0 2	5 2.0	1.5 1.0	0.5
¹³ C-NMR of LFF	0 8.5 8.0 7.5	7.0 6.5 6.0 pp	5.5 5.0	4.5 4.0	3.5 3.0 2	5 2.0		0.5
¹³ C-NMR of LFF		7.0 6.5 6.0 pp	5.5 5.0	4.5 4.0	3.5 3.0 2	5 2.0		0.5
¹³ C-NMR of LFF		7.0 6.5 6.0 pp	5.5 5.0	4.5 4.0	3.5 3.0 2	5 2.0		0.5
¹³ C-NMR of LFF		7.0 6.5 6.0 pp	5.5 5.0	4.5 4.0	3.5 3.0 2	5 20		0.5
¹³ C-NMR of LFF		7.0 6.5 6.0 pp		4.5 4.0	3.5 3.0 2			
¹³ C-NMR of LFF		7.0 6.5 6.0 PP						
¹³ C-NMR of LFF		7.0 6.5 6.0 PP	5.5 5.0					
¹³ C-NMR of LFF			5.5 5.0 m					
¹³ C-NMR of LFF								

b. D-Leu-L-Phe-L-Phe

¹H-NMR (400 MHz, DMSO, TMS): δ (ppm) 8.69 (d, J = 8 Hz, 1H, NH), 8.56 (d, J = 8 Hz, 1H, NH) 7.95 (s (br), 3H, NH3+), 7.27-7.12(m, 10H, Ar), 4.66 (m, 1H, αCH), 4.42 (m, 1H, αCH), 3.59 (m, 1H, αCH), 3.08-3.03 (m, 2H, βCH₂), 2.90 (dd, J = 8 Hz, Jgem = -12 Hz, 1H, βCH₂), 2.60 (dd, Jgem = -12 Hz, 2H, βCH₂), 1.13-0.99 (m, 3H, γCH, βCH₂), 0.63 (d, J = 6 Hz, 3H, CH₃), 0.62 (d, J = 6 Hz, 3H, CH₃). ¹³C-NMR (100MHz, DMSO, TMS): δ (ppm) 173.2, 171.6, 169.1 (3 x CO); 138.0 (1C), 129.8 (2C), 129.6 (2C), 128.7 (2C), 128.4 (2C), 127.0 (1C) (10 x Ar); 54.2, 54.1, 51.1 (3 x αC); 40.7 (1 x CH); 38.6, 37.0 (2 x βCH₂); 23.6, 22.9, 22.2 (γCH, 2 x CH₃). ESI-MS: m/z 426.1 (M+H)⁺ C₂₄H₃₁N₃O₄ requires 426.2.

II- TEM images with negative staining displaying ^DLFF short fibers originating from globular structures. Scale bar = 200 nm.

Cryo-TEM images of ^DLFF displaying how a globule responds to laser radiation damage just before disappearance.

Scale bar = 500 nm.

III- Cryo-TEM images showing how globular nuclei of LFF respond to laser radiation damage before disappearance. Scale bar = 500 nm.

IV- Confocal images for Thioflavin T-stained samples of LFF after 7 days. Scale bar = 50 microns.

V- Confocal images for Thioflavin T-stained samples of LFF showing crystal needles aligning into plates. Scale bar = 50 microns.

VI - TEM image with negative staining for LFF on fresh samples. Scale bar = 200 nm.

VII- Cryo-TEM image detail showing globules for LFF superimposed on a crystal plate. Scale bar = 200 nm.

<i>d</i> spacings (Å)				
^D LFF	LFF			
19.5	16.7			
9.8	9.5			
-	8.4			
6.5	6.3			
4.9	4.6			
3.9	3.8			
2.9	2.9			
2.8	2.7			
2.7	2.6			
2.4	-			

VIII- d spacings from XRD diffraction analysis

IX -Theoretical average distances from molecular modelling

^DLFF

molecular length ~ 17.4Å central Phe π - π stack distance ~ 4.2 Å beta-strand distance ~4.9 Å antiparallel distance ~10.3-10.5 Å

LFF

molecular length ~13.5Å central Phe π - π stack distance ~4.3 Å beta-strand distance ~4.2 Å antiparallel distance ~8.8 Å