Size-Selective pH-Operated Megagates on Mesoporous Silica Materials

Min Xue[†], Dennis Cao^{‡,§}, J. Fraser Stoddart^{‡,§} and Jeffrey I. Zink,^{†,*}

- [†] Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.
- [‡] Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
- [§] NanoCentury KAIST Institute and Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology (KAIST)373–1, Guseong Dong, Yuseong Gu, Daejeon 305–701, Republic of Korea.

SUPPORTING INFORMATION

Table of Contents

Section S1¹³C CP/MAS NMR Spectrum of modified SBA-15Section S2N2 Absorption Isotherm of SBA-15

S1. ¹³C CP/MAS NMR Spectrum of modified SBA-15

The ¹³C CP/MAS NMR spectrum of the cyclodextrin-modified SBA-15 confirms that imine formation between 6-(2-aminoethyl)amino-6-deoxy- β -cyclodextrin and SBA-15 took place successfully. The resonances at ~210 ppm can be assigned to unreacted aldehyde residues. The resonances at ~180 ppm can be assigned to carboxylic acids that are a product of the oxidation of the unreacted aldehydes. The proton α to the unreacted aldehyde, P3, resonates at ~40 ppm.

The distribution of pore sizes was determined from N_2 adsorption-desorption experiments. The relatively uniform pore sizes ensure that the majority of the pores are functional and able to uptake the large dextran cargo molecules.