m	Structure	m	Structure	m	Structure
0	FCC-HCP	33	M-Dh	66	Dh
1	FCC	34	M-Dh	67	M-Dh
2	Dh	35	Dh	68	Dh
3	FCC-HCP	36	M-Dh	69	M-Dh
4	FCC-HCP	37	M-Dh	70	M-Dh
5	FCC-HCP	38	M-Dh	71	M-Dh
6	M-Dh	39	M-Dh	72	M-Dh
7	M-Dh	40	Dh	73	M-Dh
8	M-Dh	41	M-Dh	74	Dh
9	In-Ico	42	M-Dh	75	Dh
10	M-Dh	43	M-Dh	76	In-Ico
11	M-Dh	44	M-Dh	77	Dh
12	M-Dh	45	M-Dh	78	M-Dh
13	M-Dh	46	M-Dh	79	M-Dh
14	Dh	47	In-Ico	80	Dh
15	M-Dh	48	M-Dh	81	M-Dh
16	M-Dh	49	M-Dh	82	M-Dh
17	Dh	50	M-Dh	83	M-Dh
18	Dh	51	Dh	84	M-Dh
19	Dh	52	M-Dh	85	Dh
20	Dh	53	Dh	86	M-Dh
21	In-Ico	54	M-Dh	87	Dh
22	In-Ico	55	M-Dh	88	M-Dh
23	In-Ico	56	In-Ico	89	M-Dh
24	Dh	57	M-Dh	90	FCC-HCP
25	In-Ico	58	M-Dh	91	M-Dh
26	M-Dh	59	M-Dh	92	FCC-HCP
27	M-Dh	60	M-Dh	93	FCC-HCP
28	M-Dh	61	M-Dh	94	Dh
29	Dh	62	M-Dh	95	M-Dh
30	M-Dh	63	M-Dh	96	M-Dh
31	M-Dh	64	M-Dh	97	Dh
32	Dh	65	Dh	98	M-Dh

S1. Structure types of GM for Pd_mAu_{98-m} clusters obtained with the DFT-fit Gupta potential

m	Structure	m	Structure	m	Structure
0	FCC-HCP	33	M-Dh	66	In-Ico
1	In-Ico	34	M-Dh	67	In-Ico
2	FCC-HCP	35	Dh	68	In-Ico
3	Dh	36	M-Dh	69	In-Ico
4	In-Ico	37	FCC-HCP	70	In-Ico
5	FCC-HCP	38	In-Ico	71	In-Ico
6	In-Ico	39	M-Dh	72	In-Ico
7	M-Dh	40	M-Dh	73	In-Ico
8	FCC-HCP	41	M-Dh	74	In-Ico
9	FCC-HCP	42	Dh	75	In-Ico
10	In-Ico	43	M-Dh	76	In-Ico
11	In-Ico	44	Dh	77	In-Ico
12	Dh	45	In-Ico	78	In-Ico
13	In-Ico	46	M-Dh	79	In-Ico
14	Dh	47	M-Dh	80	In-Ico
15	In-Ico	48	In-Ico	81	In-Ico
16	In-Ico	49	In-Ico	82	Dh
17	M-Dh	50	In-Ico	83	M-Dh
18	M-Dh	51	Dh	84	In-Ico
19	Dh	52	In-Ico	85	M-Dh
20	FCC	53	In-Ico	86	Dh
21	In-Ico	54	In-Ico	87	Dh
22	Dh	55	In-Ico	88	M-Dh
23	FCC-HCP	56	In-Ico	89	Dh
24	M-Dh	57	In-Ico	90	Dh
25	M-Dh	58	In-Ico	91	Dh
26	Dh	59	In-Ico	92	M-Dh
27	M-Dh	60	In-Ico	93	FCC-HCP
28	M-Dh	61	In-Ico	94	FCC-HCP
29	Dh	62	In-Ico	95	M-Dh
30	M-Dh	63	Dh	96	M-Dh
31	Dh	64	In-Ico	97	M-Dh
32	In-Ico	65	In-Ico	98	Dh

S2. Structure types of the GM for Pd_mAu_{98-m} clusters obtained with the Exp-fit Gupta potential

m	Structure	m Structure		m	Structure	
0	Dh	33	In-Ico	66	M-Dh	
1	M-Dh	34	Dh	67	M-Dh	
2	FCC	35	In-Ico	68	M-Dh	
3	M-Dh	36	In-Ico	69	M-Dh	
4	In-Ico	37	In-Ico	70	In-Ico	
5	FCC-HCP	38	In-Ico	71	M-Dh	
6	FCC	39	In-Ico	72	M-Dh	
7	FCC-HCP	40	Dh	73	Dh	
8	M-Dh	41	In-Ico	74	M-Dh	
9	FCC-HCP	42	Dh	75	M-Dh	
10	Dh	43	In-Ico	76	M-Dh	
11	M-Dh	44	In-Ico	77	FCC-HCP	
12	Dh	45	M-Dh	78	M-Dh	
13	Dh	46	M-Dh	79	Dh	
14	Dh	47	M-Dh	80	Dh	
15	Dh	48	M-Dh	81	Dh	
16	Dh	49	M-Dh	82	M-Dh	
17	Dh	50	M-Dh	83	Dh	
18	Dh	51	In-Ico	84	Dh	
19	Dh	52	Dh	85	M-Dh	
20	Dh	53	M-Dh	86	M-Dh	
21	In-Ico	54	M-Dh	87	M-Dh	
22	In-Ico	55	Dh	88	Dh	
23	Dh	56	Dh	89	M-Dh	
24	In-Ico	57	Dh	90	Dh	
25	In-Ico	58	In-Ico	91	M-Dh	
26	Dh	59	Dh	92	Dh	
27	In-Ico	60	Dh	93	M-Dh	
28	In-Ico	61	M-Dh	94	In-Ico	
29	In-Ico	62	In-Ico	95	M-Dh	
30	In-Ico	63	M-Dh	96	FCC-HCP	
31	In-Ico	64	M-Dh	97	M-Dh	
32	In-Ico	65	In-Ico	98	M-Dh	

S3. Structure types of the GM for Pd_mAu_{98-m} clusters obtained with the Average Gupta potential

S4. Numbers of heteronuclear and homonuclear bonds for GM clusters in the interval Pd₄₆Au₅₂ – Pd₅₂Au₄₆. Leary Tetrahedra (LT) (with Average potential) are included for comparison.

Gupta									
Potential	Au46Pd52	Au47Pd51	Au ₄₈ Pd ₅₀	Au49Pd49	Au ₅₀ Pd ₄₈	Au51Pd47	Au52Pd46		
Average	Average								
Au-Au	206	194	180	174	166	156	152		
Pd-Au	318	322	332	328	326	324	334		
Pd-Pd	332	340	344	354	364	376	370		
DFT-fit									
Au-Au	154	150	138	140	130	120	122		
Au-Pd	462	454	470	476	444	492	458		
Pd-Pd	240	252	248	240	282	244	276		
Exp-fit	Exp-fit								
Au-Au	174	160	162	170	166	148	148		
Au-Pd	476	478	456	418	442	402	402		
Pd-Pd	204	218	238	282	266	324	324		
Leary Tet	Leary Tetrahedra								
Au-Au	168		156		144		144		
Au-Pd	360	N/A	432	N/A	336	N/A	360		
Pd-Pd	336		276		384		360		

 $S5. Structures of AuPd clusters (generated as GM for the three Gupta potentials) in the interval Pd_{46}Au_{52}-Pd_{52}Au_{46} after DFT relaxation.$

Composition	Leary Tetrahedron	FCC-HCP	Icosahedron	Marks Decahedron
Pd46Au52	-11.6273	-11.4923	-9.5497	-11.6147
Pd47Au51	-11.1456	-11.3739	-9.3903	-11.6383
Pd48Au50	-10.9303	-11.4708	-8.9275	-11.4839
Pd ₄₉ Au ₄₉	-11.0112	-11.5620	-9.2246	-11.5060
Pd50Au48	-10.7925	-11.2877	-9.1592	-11.3032
Pd51Au47	-10.5726	-11.2604	-8.7121	-11.2280
Pd52Au46	-10.3450	-10.9750	-8.6772	-10.9586

S5. Excess energies (eV) for various structural motifs obtained for the Average potential (after BHMC homotop optimization) and subsequently relaxed at the DFT level.