Supporting Information

New insight into electronic shell of $\operatorname{Au}_{38}(\operatorname{SR})_{24}$: a superatomic molecule

by

Longjiu Cheng^{*a}, Changda Ren^b, Xiuzhen Zhang^a, and Jinlong Yang^{*c}

*Corresponding authors. E-mail: <u>clj@ustc.edu</u>; <u>jlyang@ustc.edu.cn</u>.

^aSchool of Chemistry & Chemical Engineering, and High-Performance Computing Center, School of Computer Science and Technology, Anhui University, Hefei, Anhui, 230039, People's Republic of China; E-mail: <u>clj@ustc.edu</u>.

^bDepartment of Chemistry, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.

^cHefei National Laboratory for Physics Sciences at Microscale, University of Science & Technology of China, Hefei, Anhui, 230026, People's Republic of China.; E-mail: <u>jlyang@ustc.edu.cn</u>.

Figure S1. (a) Geometry (Au: yellow; S: pink; H: white) and AdNDP localized natural bonding orbitals of $Au_{25}(SH)_{18}$: (b) lone pairs; (c) localized AuS and SH bonds (partly); (d) delocalized bonding. Labelled are occupancy numbers (ON). Au(5d) LPs (ON = 1.90 - 1.98 |e|) are not shown.

Computational details:

Geometries of Au₂₅(SH)₁₈⁻ and Au₃₈(SH)₂₄ are optimized by density functional theory (DFT) calculations performed on the Gaussian 09 package^{s1} using the generalized gradient approximation method developed by Perdew, Burke, and Ernzerhof (PBE)^{s2} with the LANL2DZ basis set for Au and 6-31G* for other elements (PBE/LANL2DZ/6-31G*). Natural bonding analysis by AdNDP is also at the PBE/LANL2DZ/6-31G* level. For similarity and clarity, a minimal LanL1MB basis set is used for the Kohn-Sham MO diagrams of Au₂₃⁽⁺⁹⁾ (and 3-21G for F₂). If using a larger LanL2DZ basis set, the overall framework of the Kohn-Sham MO diagrams for the Au(6*s*) orbitals does not change, but the σ_s , σ^*_s and $\pi_{px,py}$ MOs (Fig. 2a) will be lower than the MOs of Au(5*d*) orbitals. For clarity, the MOs of Au(5*d*) orbitals are excluded in the MO diagrams. Molecular orbital (MO) visualization is performed using MOLEKEL 5.4.^{s3}

REFERENCES

(s1) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision B.01; Gaussian, Inc., Wallingford CT (2009).

(s2) P. J. Perdew; K. Burke; M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

(s3) U. Varetto, Molekel 5.4.0.8, Swiss National Supercomputing Centre, Manno (Switzerland).

Coordinates (in angstrom):

<u>Au₂₅(SH)₁₈-</u>			
Au	0.000000	0.000000	0.000000
Au	1.535281	-0.779939	2.221473
Au	-0.092467	1.718166	2.222518
Au	-1.441175	-0.939735	2.222620
Au	2.393435	1.362745	0.572890
Au	-0.014139	-2.752427	0.573189
Au	-2.377371	1.389344	0.574874
Au	2.377371	-1.389344	-0.574874
Au	0.014139	2.752427	-0.573189
Au	-2.393435	-1.362745	-0.572890
Au	1.441175	0.939735	-2.222620
Au	0.092467	-1.718166	-2.222518
Au	-1.535281	0.779939	-2.221473

Au	2.744972	1.750761	3.723147
Au	0.145874	-3.253670	3.721129
Au	-2.890162	1.496851	3.718536
Au	4.634364	-0.612045	1.638670
Au	-1.787552	4.324748	1.643504
Au	-2.837452	-3.720339	1.639223
Au	2.837452	3.720339	-1.639223
Au	1.787552	-4.324748	-1.643504
Au	-4.634364	0.612045	-1.638670
Au	2.890162	-1.496851	-3.718536
Au	-0.145874	3.253670	-3.721129
Au	-2.744972	-1.750761	-3.723147
S	2.162452	-2.088912	4.238558
S	0.724480	2.904673	4.247626
S	-2.886715	-0.831161	4.240759
S	4.937534	0.846400	3.495140
S	-1.738519	-4.696527	3.512222
S	-3.196342	3.850115	3.503213
S	4.211234	3.010652	0.174931
S	0.475596	-5.154721	0.164719
S	-4.697527	2.177647	0.158633
S	4.697527	-2.177647	-0.158633
S	-0.475596	5.154721	-0.164719
S	-4.211234	-3.010652	-0.174931
S	3.196342	-3.850115	-3.503213
S	1.738519	4.696527	-3.512222
S	-4.937534	-0.846400	-3.495140
S	2.886715	0.831161	-4.240759
S	-0.724480	-2.904673	-4.247626
S	-2.162452	2.088912	-4.238558
Η	1.630255	-1.229884	5.134899
Η	0.247325	2.004115	5.134049
Η	-1.875443	-0.793986	5.134933
Η	5.434182	1.889749	2.793923
Η	-1.086367	-5.661027	2.825222
Η	-4.349813	3.764842	2.803766
Η	4.334943	-3.250125	0.578659
Η	0.639146	5.388361	0.561477
Η	-4.985739	-2.178253	0.554704
Н	4.985739	2.178253	-0.554704
Н	-0.639146	-5.388361	-0.561477
Н	-4.334943	3.250125	-0.578659
Н	4.349813	-3.764842	-2.803766
Н	1.086367	5.661027	-2.825222

Н	-5.434182	-1.889749	-2.793923
Н	1.875443	0.793986	-5.134933
Н	-0.247325	-2.004115	-5.134049
Н	-1.630255	1.229884	-5.134899
<u>Au₃₈(SI</u>	<u>H)</u> ₂₄		
Au	0.000000	0.000000	2.070462
Au	0.000000	0.000000	-2.070462
Au	0.000000	1.934853	0.000000
Au	1.675632	-0.967426	0.000000
Au	-1.675632	-0.967426	0.000000
Au	2.351470	1.415744	1.516562
Au	-2.401805	1.328561	1.516562
Au	0.050335	-2.744304	1.516562
Au	2.401805	1.328561	-1.516562
Au	-2.351470	1.415744	-1.516562
Au	-0.050335	-2.744304	-1.516562
Au	-0.104092	2.800769	2.698880
Au	2.477583	-1.310238	2.698880
Au	-2.373491	-1.490531	2.698880
Au	0.104092	2.800769	-2.698880
Au	2.373491	-1.490531	-2.698880
Au	-2.477583	-1.310238	-2.698880
Au	1.413484	1.053991	4.259511
Au	-1.619525	0.697117	4.259511
Au	0.206041	-1.751108	4.259511
Au	1.619525	0.697117	-4.259511
Au	-1.413484	1.053991	-4.259511
Au	-0.206041	-1.751108	-4.259511
Au	-4.262278	-2.460828	0.000000
Au	0.000000	4.921655	0.000000
Au	4.262278	-2.460828	0.000000
Au	2.756942	3.777156	3.553801
Au	-4.649584	0.499004	3.553801
Au	1.892642	-4.276160	3.553801
Au	4.649584	0.499004	-3.553801
Au	-2.756942	3.777156	-3.553801
Au	-1.892642	-4.276160	-3.553801
Au	-0.248811	3.314211	5.659737
Au	2.994596	-1.441629	5.659737
Au	-2.745785	-1.872582	5.659737
Au	0.248811	3.314211	-5.659737
Au	2.745785	-1.872582	-5.659737
Au	-2.994596	-1.441629	-5.659737

S	4.327035	2.961748	1.874314
S	-4.728467	2.266448	1.874314
S	0.401432	-5.228196	1.874314
S	4.728467	2.266448	-1.874314
S	-4.327035	2.961748	-1.874314
S	-0.401432	-5.228196	-1.874314
S	-1.046297	5.101470	2.180338
S	4.941151	-1.644615	2.180338
S	-3.894854	-3.456855	2.180338
S	1.046297	5.101470	-2.180338
S	3.894854	-3.456855	-2.180338
S	-4.941151	-1.644615	-2.180338
S	2.780445	0.875808	6.368381
S	-2.148694	1.970032	6.368381
S	-0.631751	-2.845840	6.368381
S	2.148694	1.970032	-6.368381
S	-2.780445	0.875808	-6.368381
S	0.631751	-2.845840	-6.368381
S	1.528527	4.935000	5.307550
S	3.509572	-3.791243	5.307550
S	-5.038099	-1.143757	5.307550
S	-1.528527	4.935000	-5.307550
S	5.038099	-1.143757	-5.307550
S	-3.509572	-3.791243	-5.307550
Н	3.986237	3.873097	0.895177
Н	1.361082	-5.388731	0.895177
Н	-5.347319	1.515634	0.895177
Н	5.347319	1.515634	-0.895177
Н	-3.986237	3.873097	-0.895177
Н	-1.361082	-5.388731	-0.895177
Н	-0.056888	5.862397	2.771694
Н	5.105429	-2.881932	2.771694
Н	-5.048541	-2.980465	2.771694
Н	0.056888	5.862397	-2.771694
Н	5.048541	-2.980465	-2.771694
Н	-5.105429	-2.881932	-2.771694
Н	3.962616	1.309189	5.799947
Н	-3.115099	2.777131	5.799947
Н	-0.847517	-4.086320	5.799947
Н	3.115099	2.777131	-5.799947
Η	-3.962616	1.309189	-5.799947
Н	0.847517	-4.086320	-5.799947
Η	2.328153	4.552143	6.365339
Н	-5.106348	-0.259832	6.365339

Н	2.778195	-4.292311	6.365339
Н	5.106348	-0.259832	-6.365339
Н	-2.328153	4.552143	-6.365339
Н	-2.778195	-4.292311	-6.365339