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I. HIGH-TEMPERATURE ANNEALING PROCESS

To construct the amorphous SiO2 substrate at room temperature, we start with the crystalline

form of SiO2: alpha-quartz (α-quartz). We apply Langevin heat bath to equilibrate α-quartz at

3000 K (above melting point) for 100 ps in order to achieve the amorphous structure. The resul-

tant structure is then annealed to room temperature with a constant cooling rate of 1013 K/s [1].

The partial pair distribution function [2] for different chemical bonds in the amorphous SiO2 struc-

ture generated in our study (Fig. S1) shows excellent agreement with previous study [3], which

highlights the accuracy of the high-temperature annealing process used in our simulation.

II. NON-EQUILIBRIUM MOLECULAR DYNAMICS SIMULATION

Before non-equilibrium MD simulation, the canonical ensemble MD simulation with Langevin

heat bath first runs for 105 steps to equilibrate the whole system at room temperature. After

structure relaxation, fixed boundary condition is used at the two ends of the length (x) direction

(Fig. 1a). Next to the fixed boundary, Langevin heat baths with different temperature are applied

to the two ends of x direction to simulate the heat source (red box) and heat sink (blue box) in real
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experiment, respectively. Periodic boundary condition is used in the width (y) direction, and free

boundary condition is used in the out-of-plane (z) direction. Both the graphene and substrate are

attached to the heat bath with the same temperature at each end (Fig. 1(b)). The non-equilibrium

MD simulations are then performed long enough (107 time steps) to allow the system to reach the

non-equilibrium steady state where the temperature gradient is well established and the heat flux

passing through the system is time independent. Thermal conductivity is calculated according to

κ = −J/∇T, (S1)

where ∇T and J is, respectively, the temperature gradient and the heat flux transported in graphene

region only. In our simulation, the heat flux is calculated according to the energy injected into /

extracted from the heat source / heat sink in the graphene sheets only (exclude the heat flux in

substrate) across unit area per unit time. These two rates are equal in the non-equilibrium steady

state. For supported graphene, only heat flux transported in graphene region is recorded in our

simulations. The cross section area (S) of the graphene sheets is defined as S=3.35*W*n Å
2 in

our calculations, where W is the width of graphene, and n is the number of layers. The temper-

ature gradient is calculated according to the slope of the linear fit line of the local temperature in

graphene along x direction.

III. COMPARE THERMAL CONDUCTIVITY OF SUSPENDED SINGLE-LAYER

GRAPHENE WITH LITERATURE VALUE

We notice that κ of suspended SLG found in our study (∼1000 W/m-K) is much larger than

that reported by Ong et al. [4] (256 W/m-K) under the similar sample size (length is about 30

nm and width is about 5 nm). We contribute this discrepancy to the choice of interatomic po-

tential used for graphene. The original Brenner potential was used in Ref. [4], while we use the

Tersoff potential with optimized parameters set for graphene developed by Lindsay et al. [5],

which can describe more accurately the upper optic phonon branches while providing a good fit

to the acoustic velocity and phonon frequency. Lindsay et al. found that the original Brenner

potential failed to accurately represent the zone-center velocities for all the acoustic modes [5],

leading to 30% underestimation for longitudinal acoustic (LA) branch and 12% underestimation

for transverse acoustic (TA) branch compared to experimental values. Since thermal conductivity

depends critically on the group velocity of acoustic phonons based on the Boltzmann transport
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equation approach, Lindsay et al. found the use of original Brenner potential can lead to a large

underestimation of thermal conductivity for suspended SLG [5].

IV. SPECTRAL ENERGY DENSITY ANALYSIS

The spectral energy density (SED) in our calculation is defined as [4, 6]

Φ(k, ω) =
1

4πτ0NxNyNz

∑
α

B∑
b=1

mb
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0

Nx−1∑
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vα,b(nx, ny, nz, t)exp

[
2πiknx

Nx

− iωt

]
dt

∣∣∣∣2,
(S2)

where k is the wavevector index, ω is the angular frequency, τ0 is the total simulation time, α is

the Cartesian index, b is the atom index in each unit cell, m and v is the atomic mass and velocity,

respectively, and Nx, Ny, Nz denotes the number of unit cell in x, y, z direction, respectively.

Here we consider a one-dimensional Brillouin zone along the length (x) direction (1 ≤ k ≤ Nx).

We choose the same four-atom unit cell described in Ref. [4], and use a fixed simulation domain

of Nx=20 and Ny=6 for the in-plane direction. Periodic boundary condition is used in both x and

y (in-plane) direction, and free boundary condition is used in z (out-of-plane) direction. After

structure relaxation with Langevin heat bath, we carry out microcanonical ensemble (NVE) MD

simulation to the whole system for 3 ns and 1 ns for the suspended and supported graphene,

respectively, and record the velocity for each atom in the graphene every 5 fs. We further extend

the NVE MD simulation steps and find the calculation results of SED is well converged within the

abovementioned total simulation time. To examine the accuracy of our simulation, we calculate

the SED for LA phonons near zone-center (k=1) in suspended SLG and find the eigen-frequency

at f=4.45±0.05 THz (Fig. S2). Using the lattice constant L0 and group velocity for LA phonons

vLA associated with the optimized Tersoff potential listed in Ref. [5], the theoretical estimation

gives rise to f=vLA/(L0Nx)=4.38 THz, in good agreement with our simulation results.

V. ESTIMATE THERMAL CONDUCTIVITY OF BULK GRAPHITE

In order to estimate the thermal conductivity in the bulk graphite limit from our existing data,

we fit the raw data from MD simulation according to the double exponential function based on the

two-stage increase characteristic as

κ = κ0 + A1

(
1− e−n/B1

)
+ A2

(
1− e−n/B2

)
, (S3)
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where κ0, A1, B1, A2 and B2 are fitting parameters. The double exponential fitting yields κ0=417,

A1=147, and A2=398, suggesting thermal conductivity in bulk graphite limit as κgraphite=κ0 +

A1 + A2=962 W/m-K.
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FIG. S1: Partial pair distribution function (PDF) for different chemical bonds in amorphous SiO2 at 300 K.

(a) Si-Si bond. (b) Si-O bond. (c) O-O bond.
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FIG. S2: Normalized spectral energy density (SED) for zone-center LA phonons (k=1) in suspended single-

layer graphene.
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