Supplementary Information for

A Conceptual Translation of Homogeneous Catalysis into Heterogeneous Catalysis: Homogeneous-Like Heterogeneous Gold Nanoparticle Catalyst Induced by Ceria Supporter

Zhen-Xing Li,^{*a*} Wei Xue,^{*a,c*} Bing-Tao Guan,^{*b*} Fu-Bo Shi,^{*a*} Zhang-Jie Shi*^{*b*} Hong Jiang*^{*a,c*} and Chun-Hua Yan*^{*a*}

^{*a*} Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.

^b Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

^c Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China.

* To whom correspondence should be addressed. E-mail: yan@pku.edu.cn (C.H.Y.); zshi@pku.edu.cn (Z.J.S.); h.jiang@pku.edu.cn (H.J.)

Figure S1. To mimic the properties of $CeO_2(111)$ surface using $(CeO_2)_{13}H'_{27}H''_{27}$ cluster model, in which H' and H'' are the pseudo-hydrogens with the corresponding fractional charge in parentheses.

Figure S2. $(CeO_2)_{14}H'_{36}H''_{12}$ cluster model mimicking $CeO_2(100)$ surface.

Figure S3. $(TiO_2)_{14}H'_{21}H''_{21}$ cluster model mimicking anatase(101) surface.

Figure S4. $(TiO_2)_{13}H'_{18}H''_{18}$ cluster model mimicking anatase(001) surface.

Figure S5. $(Al_2O_3)_7H'_{12}H''_{12}$ cluster model mimicking γ -Al₂O₃(110) surface.

Figure S6. C₂₄H₁₂ cluster model mimicking graphene.

Figure S7. The average charge state of gold atom in $Au_n (n = 2 - 4)$ clusters on $(CeO_2)_{14}H'_{36}H''_{12}$ cluster.

Figure S8. FTIR spectra of CO adsorbed on gold supported on CeO_2 nanocube at a CO pressure of 30 Torr and at room temperature.

Figure S9. X-ray photoelectron spectroscopic scan survey in the region of Au 4d of gold supported on CeO_2 nanocube.

Figure S10. X-ray photoelectron spectroscopic scan survey in the region of Ce 3d of gold supported on CeO_2 nanocube.

Figure S11. The reaction yield as a function of time for Au/CeO₂ nanocube catalysts.

Figure S12. Au/CeO₂ nanocube catalysts for cycloisomerizations of enynes after different uses.

Figure S13. Transmission electron microscope (TEM) images of Au/CeO₂ nanocubes after the reaction. No leaching or aggregation is observed.

Figure S14. Transmission electron microscope (TEM) images of Au/TiO₂ nanoparticles.

Figure S15. Calculated structures of a Au adsorption at $TiO_2(101)$, $TiO_2(001)$, γ -Al₂O₃(110) and the surface of monolayer GP.

somparing to the data in the references.							
Model	Method	Site	r(C-Ce)/Å	$E_{\rm ads}/{\rm eV}$	Reference		
Slab	PW91	atop Ce	2.86	-0.17	Yang, Z. et al. Chem. Phys. Lett. 2004, 396, 384.		
Slab	PW91+U	atop Ce	2.86	-0.26	Nolan, M. et al. Surf. Sci. 2006, 600, L175.		
Slab	PW91+U	atop Ce	2.88	-0.26	Nolan, M. et al. J. Phys. Chem. B 2006, 110, 16600.		
Slab	PBE+U	atop Ce	2.86	-0.17	Huang, M. et al. J. Phys. Chem. C 2008, 112, 8643.		
Slab	PW91+U	atop Ce	2.91	-0.18	Jiang, S. Y. et al. Acta PhysChim. Sin. 2009, 25, 1629.		
Embedded Cluster	LDA	atop Ce	2.856	-0.54	Müller, C. et al. Surf. Sci. 2009, 603, 2619.		
	Exp.			~-0.2	Zaki, M. et al. Spectrochim. Acta 1987, 43A, 1455.		
Saturated Cluster	LDA	atop Ce	2.73	-0.46	This work		

Table S1 The chemisorption energies of carbon monoxide on $(CeO_2)_{13}H'_{27}H''_{27}$ cluster, comparing to the data in the references.

Model	Method	Site	v(C-O) _{model} /cm ⁻¹	v(C-O)gas/cm ⁻¹	Reference
	Exp.			2143	Street, S.C. et al. Ann. Rev. Phys. Chem. 1997, 48, 43.
	Exp.			2148	Reinhardt, P. A. et al. Phys. Rev. B 1996, 54, 14812.
	Exp.		2165		Bensalem, A. et al. Appl. Catal. A-Gen. 1995, 121, 81.
	Exp.		2177		Li, C. et al. J. Chem. Soc. Faraday Trans. 1989, 185, 929.
Slab	PW91	atop Ce	2082	2076	Yang, Z. et al. Chem. Phys. Lett. 2004, 396, 384.
Slab	PW91+U	atop Ce	2128	2103	Nolan, M. et al. Surf. Sci. 2006, 600, L175.
Saturated Cluster	LDA	atop Ce	2127	2124	This work

Table S2 The vibrations of carbon monoxide on $(CeO_2)_{13}H'_{27}H''_{27}$ cluster, comparing to the data in the references.

Table S3. The state of charge of gold atom on $(CeO_2)_{13}H'_{27}H''_{27}$ cluster.

Model	Method	Site	$q_{ m Au}$	$E_{\rm ads}/{\rm eV}$	Reference
Slab	PW91+U	bridge O	+0.33	-1.15	Hernandez, N. C. et al. Phys. Chem. Chem. Phys. 2009, 11, 5246.
Slab	PW91+U	bridge O	+0.32	-1.17	Zhang, C. J. et al. J. Chem. Phys. 2008, 129, 194708.
Slab	PBE	atop O	+0.35	-1.26	Liu, Z. P. et al. Phys. Rev. Lett. 2005, 94, 196102.
Saturated Cluster	LDA	atop O	+0.28	-1.44	This work

Table. S4. Gold loading and XPS Au4f peak analyses for Au on CeO₂, TiO₂, Al₂O₃, C and grapheme.

Fntry	Catalyst	Au (wt %)	XPS Au4f peak			
Liiti y			Au ⁰	Au^+	Au ³⁺	
1	Au/CeO ₂	1.1	64%	23%	13%	
2	Au/TiO ₂	1.3	73%	14%	13%	
3	Au/Al_2O_3	1.2	83%	9%	8%	
4	Au/C	0.9	85%	10%	5%	
5	Au/GP	0.9	100%			

Table S5. The charge state distribution of gold atom on the CeO₂ (100), TiO₂(101), TiO₂(001), γ -Al₂O₃(110) and the surface of monolayer GP.

Support	Model	Site	r(Au-O/Al/C)/Å	q _{Au}
CeO ₂ (100)	$(CeO_2)_{14}H'_{36}H''_{12}$	hollow O	1.95	+0.61
TiO ₂ (101)	$(TiO_2)_{14}H'_{21}H''_{21}$	bridge O	2.05	+0.32
TiO ₂ (001)	(TiO ₂) ₁₃ H' ₁₈ H'' ₁₈	bridge O	2.03	+0.31
$Al_2O_3(110)$	$(Al_2O_3)_7H'_{12}H''_{12}$	atop Al	2.48	+0.10
GP	$C_{24}H_{12}$	atop C	2.33	+0.03