Supplementary Information

Bandgap engineering of Cd_xZn_{1-x}Te nanowires

Keivan Davami, Judith Pohl, Mehrdad Shaygan, Nazli Kheirabi, Hamid Faryabi, Gianalrelio Cuniberti, Jeong-Soo Lee, and M. Meyyappan

(a)

(b)

Fig. S1 (a) A TEM image of a single nanowire, (b) HRTEM image and the diffraction pattern, (c) EDX results for segments in the beginning and end of the nanowire. Substrate temperature Tsu= 400°C.

Fig. S2. XRD pattern of alloy nanowires with different compositions.

•

Fig. S3. Shift of (111) Bragg's peak for Cd_xZn_{1-x}Te nanowires with different ratios of Cd

Sample No.	Position of	Lattice	Lattice	Dhaga	
	(111)	Space	Constant	Phase	

	Peak 20	(nm)	(nm)	
	(degree)			
ZnTe	25.26	0.25220	0.6102	Zincblende
	23.20	0.33230	0.0102	(Cubic)
Cd _{0.03} Zn _{0.97} Te	25.20	0.25212	0.6116	Zincblende
	23.20	0.33312	0.0110	(Cubic)
Cd _{0.37} Zn _{0.63} Te	24 69	0.26042	0 6242	Zincblende
	24.08	0.30043	0.0242	(Cubic)
Cd _{0.41} Zn _{0.59} Te	24.62	0 36131	0.6258	Zincblende
	24.02	0.30131	0.0238	(Cubic)
Cd _{0.63} Zn _{0.37} Te	24.30	0.36500	0.6330	Zincblende
	24.30	0.30399	0.0339	(Cubic)
Cd _{0.67} Zn _{0.33} Te	24.24	0 36688	0.6354	Zincblende
	24.24	0.30088	0.0354	(Cubic)
CdTe	23.76	0 37420	0.6475	Zincblende
	23.10	0.37420	0.0475	(Cubic)

Table S1. The compositions and lattice parameters of $Cd_xZn_{1-x}Te$ nanowires.

Sample	Formula a	۲ (Å)	x (Based on Vegard's	Cd A% based	x (Calculated
		α (Α)	Law)	on the EDS	based on the EDS

				result	result)
1	ZnTe	0.6106	0	0	0
2	Cd _{0.03} Zn _{0.97} Te	0.6116	0.03	2.25	0.03
3	$Cd_{0.2}Zn_{0.8}Te$	0.6183	0.2	9	0.18
3	Cd _{0.37} Zn _{0.63} Te	0.6242	0.37	17	0.32
4	$Cd_{0.41}Zn_{0.59}Te$	0.6258	0.41	23	0.42
5	Cd _{0.63} Zn _{0.37} Te	0.6339	0.48	27	0.44
6	Cd _{0.67} Zn _{0.33} Te	0.6354	0.67	37	0.67
7	CdTe	0.6475	1	50	1

Table S2. Chemical formula based on Vegard's law for different alloy nanowires, maximum Cd percentage of different compositions based on the EDX results, and x values based on the EDX results.