Supplementary Material

Chemically Differentiating Ascorbate-Mediated Dissolution of Quantum Dots in Cell Culture Media

Cheng-Kuan Su and Yuh-Chang Sun*

Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan.

*Corresponding Author: E-mail: ycsun@mx.nthu.edu.tw

Figure S1. Step 1 (A1:B2:C1): fill acidified sample into PTFE I (red line); detach Cd²⁺ ions from PTFE II and deliver to ICP mass spectrometer (orange line).

Figure S2. Step 2 (A1:B2:A2): fill acidified sample into PTFE I (red line); replace HNO₃ in PTFE II with air carrier stream (gray line).

Figure S3. Step 3 (A2:B2:A2): remove sample from PTFE I (aqua blue line); deliver the sample buffered with basic PBS into PTFE II (blue line).

Figure S4. Step 4 (A2:B1:A2): detach QD705 from PTFE I and deliver to ICP mass spectrometer (yellow line); deliver the sample buffered with basic PBS into PTFE II (blue line).

Figure S5. Step 5 (A2:B1:A1): replace HNO₃ in PTFE I with air carrier stream (gray line); then return to step 1.

Step	Function	Valve position	Time, s	Medium delivered	Flow rate, µL min ⁻¹
1	Fill acidified sample into PTFE I; detach Cd ²⁺ ions from PTFE II and deliver to ICP mass spectrometer	A: 1 (load) B: 2 (injection) C: 1 (load)	90	Sample Acidic PBS HNO3, air	5 5 400
2	Fill acidified sample into PTFE I; replace HNO ₃ in PTFE II with air carrier stream	A: 1 (load) B: 2 (injection) C: 2 (injection)	30	Sample Acidic PBS HNO3, air	5 5 400
3	Remove sample from PTFE I; deliver the sample buffered with basic PBS into PTFE II	A: 2 (injection) B: 2 (injection) C: 2 (injection)	180	Sample Basic sample	20 40
4	Detach QD705 from PTFE I and deliver to ICP mass spectrometer	A: 2 (injection) B: 1 (load) C: 2 (injection)	150	HNO3, air Basic sample	400 40
5	Replace HNO ₃ in PTFE I with air carrier stream	A: 2 (injection) B: 1 (load) C: 1 (load)	30	HNO ₃ , air Basic sample	400 40

 Table S1. Operation sequence of the sequential in-tube PTFE SPE-ICP-MS hyphenated

 system

Sequential in-tube SPE device				
PTFE tubing I	200 cm, 0.007 inch			
PTFE tubing II	200 cm, 0.02 inch			
Acidic buffer for mixing	10 mM PBS, pH 3.7 for saline sample			
	10 mM PBS, pH 1.5 for DMEM + 10% FBS			
Basic buffer for mixing	5 mM PBS, pH 9.2 for saline sample			
	5 mM PBS, pH 11.1 for DMEM + 10% FBS			
Sample loading	$5 \ \mu L \ min^{-1}$			
Acidic buffer flow rate	$5 \ \mu L \ min^{-1}$			
Basic buffer flow rate	$20 \ \mu L \ min^{-1}$			
Eluent	2% HNO ₃			
Elution flow rate	$400 \ \mu L \ min^{-1}$			
Sampling frequency	$7.5 h^{-1}$			
ICP-MS				
ICP mass spectrometer	Agilent 7500a			
Ar gas flow rates				
Plasma	$15 \mathrm{Lmin}^{-1}$			
Auxiliary	$0.9 \mathrm{~L~min}^{-1}$			
Nebulizer	$1.03 \mathrm{~L~min^{-1}}$			
Make-up	0.12 L min ⁻¹			
Plasma forward power	1500 W			
Sampling cone	Ni, 1-mm orifice			
Skimmer cone	Ni, 0.4-mm orifice			

 Table S2. Optimized parameters for sequential in-tube PTFE SPE-ICP-MS hyphenated

 system