Electronic Supplementary Information

Nanosheet thickness-modulated MoS₂ dielectric property evidenced by field-effect transistor performance

Sung-Wook Min,§^{*a*} Hee Sung Lee,§^{*a*} Hyoung Joon Choi,^{*a*} Min Kyu Park,^{*b*} Taewook Nam,^{*c*} Hyungjun Kim,^{*c*} Sunmin Ryu,^{*a*} and Seongil Im^{**a*}

^aInstitute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea

^bDepartment of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 446-701, Korea

^cSchool of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Korea

*Corresponding author semicon@yonsei.ac.kr

§S. Min and H. S. Lee equally contributed to this work.

Fig. S1 (a) 3D schematic and transfer curves of MoS_2 memory FETs with P(VDF-TrFE) ferroelectric polymer. According to (b) the transfer curves of our memory FETs, the FET with single layer MoS_2 channel shows the most superior SS property while the SS properties degrade with the MoS_2 thickness as shown from double- and triple-layer devices, supporting our main results from top-gate MoS_2 FETs with Al_2O_3 dielectrics. (As another result following the SS degradation, we can see that the memory window gets reduced.)