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Fig. S1 Adsorption and desorption isotherms of nitrogen on SWNT, ox-SWNT, ox-Ar-SWNT, and MWNT at 77 K. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2 s-plots of the nitrogen adsorption isotherms on SWNT, ox-SWNT, and ox-Ar-SWNT at 77 K. 
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In the present study, we used the simulated isotherm onto inner pore of model SWNT whose diameter was 8.0 nm as a 

standard data for s-plot analysis.
1
 The adsorption isotherm of nitrogen at 77 K on the model pore was estimated by the grand 

canonical Monte Carlo (GCMC) simulation technique. 

The intermolecular interaction (   ) between nitrogen molecules was modeled using Lennard-Jones potential shown as 

equation (1). 

               
   

   
 
  

  
   

   
 
 

          

        (1) 

Here, rij is the intermolecular distance between nitrogen molecules. Also, ff and ff are the Lenard-Jones constants of nitrogen 

molecules. We used 104.2 K and 0.3632 nm as (ff /kB) and ff, respectively, where kB is the Boltzmann constant.
1
 The 

interaction potential of a nitrogen molecule with the inner surface of model SWNT is described by a summation of the 

interaction potential of a nitrogen molecule with a carbon cylinder defined as equation (2). In this model, interaction potential 

between a hydrogen molecule and inner surface of the tube (   ) was calculated by the equation shown as equations (3) and 

(4).
2
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       (4) 

 

Here, C is a two-dimensional density of carbon atoms (C =38.2 nm
-2

), a is a radius of a tube, r is a distance from the centre 

axis of a tube to a nitrogen molecule, F is a hypergeometric function, and sf and sf are the energy and size parameters in the 

Lennard-Jones potential between a nitrogen molecule and a carbon atom calculated by Lorentz-Berthelot rules, in which we 

used 28.0 K and 0.340 nm for the Lennard-Jones parameters for carbon. The total interaction potential for the system was 

calculated by the summation of all interactions of each adsorbate. The types of Monte Carlo steps involved in a GCMC 

simulation are moves, creations, and destructions. In each step, either move, creation, or destruction was attempted with equal 

probability. For each isotherm point, the system was allowed to equilibrate over 310
6
 steps followed by the continuous 

calculation for over 510
6
 steps to obtain the average number of the adsorbate in the simulation box. 

Also, the average micropore width (w) of a cylindrical pore can be evaluated from both the surface area of micropore and the 

micropore volume using the simple geometrical relation.  

  
       

      
           

          (5)  
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Fig. S3 Powder XRD profile of MWNT (=0.154 nm)． 

 

The average number of carbon layers constructing MWNT was about 10 when we used Scherrer equation to determine the 

crystalline size of layering direction obtained from 002 reflection (2=25.8 deg.). Here, we assumed the interlayer distance as 

0.3354 nm which is the ideal distance for graphite. Therefore, we could calculate the GCMC-simulated adsorption isotherms 

on model MWNTs having different inner pore sizes whose number of the carbon layers could be assumed as 10. We could 

calculate the theoretical isotherms of nitrogen on MWNTs as shown in Fig. S4, just applying the potential model for the 

calculation of SWNT. The interaction potential between a nitrogen molecule and the pore wall of MWNT could be simply 

calculated by the summation of the potential for SWNT shown in equations (2), (3), and (4), because we can assume the 

structure of MWNT as an integrated one of SWNT having different diameters.  

 

 
Fig. S4 GCMC-simulated adsorption isotherms of nitrogen on MWNTs (10 carbon layers) at 77 K as a function of pore width. 
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Fig. S5 Powder XRD profiles of ox-Ar-SWNT-Zn-evac and ox-Ar-SWNT-Zn-H2O (=0.100 nm). 

 

 

 

 

 

 

 

 

 
Fig. S6 TEM image of Zn(OAc)2 crystal formed in MWNT involved in ox-Ar-SWNT. 

 

Here, the interlayer distance of the crystal was 0.322 nm which can be assigned to 311 plane of Zn(OAc)2 crystal (PDF No. 

33-1464). 
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Fig. S7 C1s XPS spectra of SWNT, ox-SWNT, ox-Ar-SWNT, and MWNT and deconvoluting results. 
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Fig. S8 Fourier transforms of Zn K-edge EXAFS spectra of ox-Ar-SWNT-Zn-evac, ox-Ar-SWNT-Zn-H2O, MWNT-Zn-evac, 

and MWNT-Zn-H2O. The spectra obtained by the experiment and the theoretical calculations are plotted by solid line and 

white circles, respectively. 
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