Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Electronic Supplementary Information

Designing high-performance electrochemical energy storage nanoarchitectures to balance rate and capacity

Megan B. Sassin,^{a,*} Cheyne P. Hoag,^a Bradley T. Willis,^a Nathan W. Kucko,^a Debra R. Rolison^a, Jeffrey W. Long,^{a,*}

Experimental Methods

Chemicals

Resorcinol (Aldrich), formaldehyde (37%, Aldrich), sodium carbonate (Aldrich), sodium sulfate (Aldrich), sodium

¹⁰ permanganate monohydrate (Aldrich), and lithium sulfate (Alfa Aesar) were used as received. All solutions were prepared with ultrapure water from an in-house water purification system (>18 M Ω cm).

Preparation of carbon–fiber-supported carbon nanofoam ¹⁵ papers

Carbon fiber and glass slide preparation

Carbon fiber paper (Lydall) was cut into $4 \times 4 \text{ cm}^2$ squares and plasma etched for 45 min in the presence of air and an ice chip to humidify the gas (Harrick radio-frequency glow-discharge

²⁰ plasma cleaner; 30-W setting). Glass slides (VWR, 5 cm²) were cleaned by soaking in a NaOH/ethanol base bath for 16 h, rinsed thoroughly with ultrapure water, and then heated in static air at 500 °C for 2 h in a muffle furnace (Thermolyne 47900).

Fabrication of carbon nanofoams

- ²⁵ Carbon-paper-supported carbon nanofoams derived from resorcinol-formaldehyde (RF) precursors were prepared as previously described.^{S1} The pore size was tuned by varying the RF weight percentage and/or resorcinol-to-catalyst ratio (Table S1). For all nanofoam formulations, a resorcinol-formaldehyde
- ³⁰ (RF) sol was prepared and stirred at 250 rpm for 30 min followed by a 3-h resting period at room temperature. Then, plasmaetched carbon fiber papers were placed in a dish containing the oligomerized RF sol, infiltrated under vacuum, and soaked for 1 min. The RF-infiltrated carbon fiber paper was removed from
- ³⁵ the RF sol and sandwiched between two glass slides, which were secured into place with mini-binder clips. Each assembly was wrapped in individually in duct tape. After the desired number of samples were assembled, all are placed in a single Al foil pouch containing ~ 2 mL of water and left for 12 h at room temperature
- ⁴⁰ to begin the initial curing process. The pouch is then placed in a pressure cooker (Nesco 3-in-1, Target) set to steam on "slow" cook (~88–94 °C) for 9.5 h then "warm" cook (~80 °C) for 14.5 h. The Al pouch was then removed from the pressure cooker and the duct tape was removed from each sample. The RF nanofoam was
- ⁴⁵ removed from the glass slides and soaked in ultrapure water for 1 h, followed by a 1-h soak in acetone, and subsequently dried in ambient laboratory air for 1 h. The RF nanofoams were then pyrolyzed to yield carbon nanofoams in a tube furnace (Thermo

Scientific Lindberg Blue M) by ramping to 1000 °C at 1 °C min⁻¹ ⁵⁰ and holding at 1000 °C for 2 h under flowing argon.

Electroless deposition of MnOx

- Self-limiting deposition of conformal coatings of birnessite-like $Na_{\delta}MnO_2 \bullet x H_2O$ (designated MnOx) with the carbon nanofoam papers used a previously reported procedure.^{S2} Briefly, carbon
- $_{\rm 55}$ nanofoams were vacuum infiltrated with 0.1 M Na_2SO_4 and soaked under vacuum at room temperature for ~ 10 h. Then, the 0.1 M Na_2SO_4 solution was decanted and exchanged for 0.1 M NaMnO_4·H_2O + 0.1 M Na_2SO_4. The carbon nanofoam was vacuum-infiltrated with the MnO_4^- solution 3× per hour for the
- ⁶⁰ first 5 h and then left to soak under vacuum for an additional 15 h. After 20 h of exposure to the MnO_4^- solution, the carbon nanofoams were removed, rinsed well and vacuum infiltrated with ultrapure water, and soaked for 1 h. The H₂O rinse/vacuum infiltrate/soak steps were repeated two more times. The MnOx-
- $_{\rm 65}$ carbon nanofoams were dried for 12 h under flowing N_2 at 50°C.

Materials Characterization

Electron Microscopy

Bare and MnO*x*-coated carbon nanofoam samples were prepared by cutting small sections with a fresh razor blade. The samples 70 were mounted on flat and 90° Al stubs (Ted Pella) with conductive carbon tape and examined with a scanning electron microscope (Carl Zeiss Supra 55, 20 kV).

Porosimetry

Surface area and pore volume of bare and MnOx-coated carbon 75 nanofoams were determined by nitrogen-sorption porosimetry (Micromeritics ASAP2010). All samples were degassed at 150 °C for 24 h prior to characterization. Pore size distributions were calculated from adsorption isotherm data using Micromeritics DataMaster software. Data were fitted with 80 Micromeritics DFT Plus® software, using a density functional

theory (DFT) model for a cylindrical geometry and Halsey curve thickness.

Electrochemistry

Electrochemical measurements were made using a PGZ 301 ⁸⁵ Voltalab potentiostat/galvanostat (Radiometer Analytical) or a Gamry REF600 potentiostat. All MnOx-carbon nanofoam electrodes were constructed by contacting pre-weighed pieces (typically 0.6 cm × 0.6 cm) to a nickel flag (Alfa Aesar Ni foil 0.1-µm thick, 99.5%) with nickel print (MG Chemicals). The ⁹⁰ electrodes were vacuum-infiltrated with 2.5 M Li₂SO₄ and soaked under vacuum for 1 h. Symmetric cells were assembled using two MnOx-carbon nanofoam electrodes separated by an

Nanoscale, [year], **[vol]**, 00–00 | 1

This journal is © The Royal Society of Chemistry [year]

electrolyte infiltrated polyethersulfone membrane (130-µm thick, 1.2-µm pores, Sterlitech[™]). The MnOx–carbon nanofoam||separator||MnOx–carbon nanofoam cell was secured with Teflon tape. The symmetric cell was then placed in a vial ⁵ containing electrolyte, infiltrated under vacuum, and soaked for 1 h. A beaker-cell was used for all electrochemical measurements. All electrochemical impedance spectroscopy was performed at +0.4 V.

10 Sheet Resistivity

The thickness of all samples was measured with a digital micrometer. Nanofoams were cut into 0.6 cm × 0.6 cm squares and adhered to a glass microscope slide with double-sided tape. Each corner of the nanofoam was electronically contacted with ¹⁵ nickel print/ copper wire and the contacts were secured with epoxy (Loctite Hysol 1C). A potentiostat (PGZ 301 Voltalab,

Radiometer Analytical) was used to measure voltages at 1, 5, and 20 mA and the voltages were measured with a multimeter.

20

Supplementary Tables

Table S1. RF sol recipes

	•				
	Recipe	Resorcinol (g)	Formaldehyde (g)	Na_2CO_3 (g)	Water (g)
	RF 50 R/C 500	10	14.74	0.0193	6.17
	RF 50 R/C 1500	10	14.74	0.00254	3.13
	RF 40 R/C 500	10	14.74	0.0177	13.9
	RF 40 R/C 1500	10	14.74	0.00254	10.9
_					

25

Table S2. MnOx weight loadings, sheet conductivity, and density of bare and MnOx-carbon nanofoams

Nanofoam	Wt% MnOx	Sheet conductivity (S cm ⁻¹)	Density (g cm ⁻³)
one-ply 50/500	N/A	47	0.45
one-ply 50/500	60	28	1.4
one-ply 50/1500	N/A	47	0.54
one-ply 50/1500	57	33	1.8
one-ply 40/500	N/A	35	0.35
one-ply 40/500	60	26	1.2
one-ply 40/1500	N/A	31	0.41
one-ply 40/1500	41	25	0.93
three-ply 50/500	N/A		0.57
three-ply 50/500	59	33	1.2
three-ply 50/1500	N/A		0.49
three-ply 50/1500	54	34	1.2
three-ply 40/500	N/A		0.48
three-ply 40/500	52	27	0.73
three-ply 40/1500	N/A		0.43
three-ply 40/1500	33	27	0.54

Nanofoam substrate	Specific capacitance ^{<i>a</i>} "C _{s.cel} " (Fg ⁻)		Footprint capacitance ^b "C _{f.cell} " (F cm ⁻²)		Volumetric capacitance ^c "C _{v.cell} " (F cm ⁻³)		Total electrode loading (mg cm ⁻²)	MnOx electrode loading d (mg cm ⁻²)
	5 mV s^{-1}	50 mV s ⁻¹	5 mV s ⁻¹	50 mV s^{-1}	5 mV s^{-1}	50 mV s ⁻¹	-	
50/500 one-ply	29	13	0.63	0.28	31	14	12	7.2
50/500 three-ply	29	8	1.7	0.48	36	10	32	19
50/1500 one-ply	30	14	0.65	0.31	36	17	12	6.8
50/1500 three-ply	27	8	1.6	0.44	32	9.1	30	16
40/500 one-ply	33	23	0.48	0.34	27	19	9	5.4
40/500 three-ply	30	18	1.2	0.7	22	13	22	11
40/1500 one1-ply	17	11	0.21	0.14	10	6.4	8	3.3
40/1500 3-ply	17	13	0.54	0.4	9.3	7.0	18	5.9

Table S3. Electrochemical properties of one- and three-ply MnOx-carbon nanofoam symmetric devices

 * Data derived from cyclic voltammetry of symmetric MnOx devices in 2.5 M Li₂SO₄
 ^a Capacitance normalized to the mass of both electrodes (excluding metal foil current collectors and separator)
 ^b Capacitance normalized to the footprint of the MnOx symmetric cell
 ^c Capacitance normalized to the volume of both electrodes (excluding metal foil current collectors and separator)
 ^d Normalized to mass of MnOx as determined gravimetrically 5 c d

Supplementary Figures

⁵ **Fig. S1.** Specific capacitance versus cell voltage in 2.5 M Li₂SO₄ at (A) 5 mV s⁻¹ and (B) 50 mV s⁻¹ for symmetric cells comprising three-ply MnOx–carbon nanofoams of the following formulations: 50/500 (----), 50/1500 (----), 40/500 (----), and 40/1500 (•••).

Fig. S2. Geometric capacitance versus voltage in 2.5 M Li₂SO₄ for symmetric cells at 5 mV s⁻¹ (top row) and 50 mV s⁻¹ (bottom row) with one-ply (—) and three-ply (– –) MnOx-modified carbon nanofoam papers in which the nanofoam formulation varies from (A, D) 50/500, (B, E) 40/500, and (C, F) 40/1500.

Fig. S3. Nyquist plots at 400 mV as normalized to the device footprint for symmetric cells with MnOx on 50/500 (---), 50/1500 (---), 40/500 (---), and 40/1500 (•••) carbon nanofoams (A) one-ply and (B) three-ply.

Fig. S4. Zreal versus frequency of one-ply symmetric cells with MnOx on 50/500 (—), 50/1500 (– –), 40/500 (- – -), and 40/1500 (• • •) carbon nanofoams at +0.4 V.

5

Fig. S5. The Bode plots as normalized for either geometric footprint or volume of the device of the real (top row) and imaginary (bottom row) components of capacitance for one-ply MnOx symmetric cells with 50/500 (---), 50/1500 (---), 40/500 (---), and 40/1500 (•••) MnOx-carbon nanofoams at +0.4 V.

10

15

 $_{5}$ Fig. S6. Phase angle versus frequency for symmetric cells comprising three-ply MnOx-carbon nanofoams of the following formulations: 50/500 (---), 50/1500 (---), 40/500 (---), and 40/1500 (•••).

10

Notes and references

- ^a U. S. Naval Research Laboratory, Surface Chemistry Branch (Code
- 6170), Washington, DC 20375, USA.
- *Corresponding Authors: Fax: 202-767-3321;
- 15 E-mail: megan.sassin@nrl.navy.mil, jeffrey.long@nrl.navy.mil
 S1 J. C. Lytle, J. M. Wallace, M. B. Sassin, A. J. Barrow, J. W. Long, J. L. Dysart, C. H. Renninger, M. P. Saunders, N. L. Brandell, and
 - D. R. Rolison, Energy Environ. Sci., 2011, 4, 1913.
- S2 A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud, and
- J. W. Long, Nano Lett., 2007, 7, 281. 20