All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO₂ nanowire arrays

Supporting Information

Jianhang Qiu, Yongcai Qiu, Keyou Yan, Min Zhong, Cheng Mu, He Yan and Shihe Yang*

Corresponding author. E-mail: <u>chsyang@ust.hk</u>

Synthesis of TiO₂ nanowire arrays. TiO₂ nanowire arrays (NWAs) were synthesized on seeded FTO substrates by hydrothermal process.²² FTO glasses ($10 \Omega/cm^2$, Nippon Sheet Glass) were first cleaned ultrasonically 10 min in acetone, 10 min in ethanol and then rinsed with distilled water. After cleaning, TiO₂ seed layer (also played role as TiO₂ dense film) was deposited on FTO surface by spin coating of 100 μ L 0.1 M TiO₂ sol solution with a spin coater (CAS, KW-4A) at rate of 3000 rpm for 30 s and then annealed in air at 550 °C for 30 min. The TiO₂ sol solution was obtained by dissolving equimolar tetrabutyl titanate and acetylacetone in 34 mL ethanol. Then a mixed solution composed of 0.13 mL hydrochloric acid (HCl, 37 wt%), 1.7 mL deionized water (H₂O) and 34 mL ethanol, were added dropwise to the above solution followed by stirring for 30 min at room temperature. The seeded substrates were loaded into a sealed Teflon-lined stainless steel reactor (23 mL volume), containing a mixture of 6.5 mL of deionized water, 6.5 mL of 37% HCl, and 200 µL of tetrabutyl titanate. The reactor was heated at 180 °C for 8 h to synthesize TiO₂ NWAs. To investigate the influence of film thickness, other growth time (4 and 12 h) was also employed in the hydrothermal process. The obtained TiO₂ NWAs samples were washed with ethanol and water, dried in air and annealed in air at 500 °C for 30 min.

Synthesis of organometal halide perovskite sensitizers. CH₃NH₃PbI₃ sensitizer was prepared according to the reported procedure with some modifications.^{20,21,23,24} Typically, 0.3 mol (38 mL) methylamine (CH₃NH₂) solution (33wt% in absolute ethanol) was reacted with equimolar (40 mL) hydroiodic acid (HI) (57wt % in water) with stirring at 0 °C for about 2 h to synthesize methylammonium iodide (CH₃NH₃I). Crystallization of CH₃NH₃I was achieved using a rotary evaporator at 60 °C for 2~3 h. The obtained CH₃NH₃I power with equimolar lead(II) iodide (PbI₂) were dissolved in γ -butyrolactone with stirring at 60 °C for 6 h to produce a 2.5 mM CH₃NH₃PbI₃ precursor solution. Synthesis of CH₃NH₃PbI₂Br was similar to CH₃NH₃PbI₃. First, 0.3 mol (38 mL) CH₃NH₂ solution (33wt% in absolute ethanol) was reacted with equimolar (34 mL) hydrobromic acid (HBr) (48wt % in water) with stirring at 0 °C for about 2 h to synthesize methylammonium bromine (CH₃NH₃Br). Then the as-synthesized solution was evaporated at 60 °C for 2~3 h to obtain CH₃NH₃Br power. CH₃NH₃PbI₂Br precursor solution with concentration of 2.5 mM was finally obtained by dissolving equimolar CH₃NH₃Br and PbI₂ in N,N-Dimethylformamide with stirring at room temperature for 2 h.

Solar cell fabrication. The as-synthesized TiO₂ NWAs $(1.5 \times 1.5 \text{ cm})$ were spin-coated with 20 uL perovskite solutions at rate of 2000 rpm for 40 s and then annealed in air at 100 °C for 30 min. Before the spin coating process, the films were left stationary for 1 min for the infiltration of perovskite solutions onto the TiO₂ NWAs. After that, the hole transport material (HTM) solution (40 uL) containing 170 mM 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene

(*spiro*-OMeTAD), 180 mM 4-tert-butylpyridine (4-TBP), and 60 mM bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) in mixed solvent of chlorobenzene and acetonitrile (chlorobenzene: acetonitrile 20:1 v/v) was deposited onto the perovskite-sensitized TiO₂ film and left stationary for 1 min in order to penetrate the HTM solution into TiO₂ pores prior to spin coating. Then, the substrate

was spun up to 2500 rpm for 40 s, followed by heating on a hot plate set at 100 °C for 20 min under N_2 atmosphere. Finally, a 50 nm Au layer was thermally evaporated on the HTM as counter electrode. The device area was defined as the overlap between the FTO anode and counter cathode (0.196 cm²).

Characterization. The morphologies of the TiO₂ NWAs were characterized by field emission scanning electron microscope (FE-SEM; JEOL 6700F) operated at 5 kV. Further structural analysis of TiO₂ nanowire was carried out using transmission electron microscope (TEM; JEOL 2010F) operated at 200 kV. X-ray diffraction (XRD) patterns of the samples were obtained using a diffractometer (Philips, PW-1830) with Cu Ka radiation at scan rate of 4°/min under operation condition of 30 kV and 40 mA. Elemental composition of the perovskite sensitizers on TiO₂ NWAs film was investigated by energy dispersive X-ray spectroscope (EDS; Oxford INCA Energy) attached to the SEM and the distribution of the perovskites in TiO₂ NWAs was analyzed by mapping technique. Ultraviolet photoelectron spectroscopy (UPS) measurements were performed on the perovskite-sensitized TiO₂ film using a photoelectron spectrometer (Kratos Analytical, AXIS-ultra-DLD) with He (I) excitation of 21.22 eV and pass energy of 5 eV. Fabricated photovoltaic cells were characterized by current-voltage (J-V) characteristics and incident photon-to-current conversion efficiency (IPCE). Photocurrent and voltage were measured by a solar simulator (Oriel, 450 W Xe lamp, AM 1.5 global filter) equipped with an electrochemical workstation (Zahner, Zennium). The light source was calibrated to 1 sun (100 mW/cm²) using an optical power meter (Newport, model 1916-C) equipped with a Newport 818P thermopile detector. IPCE measurements were carried out with Zahner Zennium CIMPS-PCS system established with the tunable light source (TLS).

Fig. S1 XRD pattern of TiO_2 NWAs grown on FTO substrate (asterisks stands for

FTO).

Fig. S2 (a) TEM (insert) and HRTEM images of TiO_2 nanowire. (b) Selected area electron diffraction (SAED) of TiO_2 nanowire.

Fig. S3 EDS with elemental mapping results from the cross-sectional SEM of the photovoltaic cells based on (a) CH₃NH₃PbI₂Br and (b) CH₃NH₃PbI₃ sensitizers.

Fig. S4 EDS spectra for the (a) $CH_3NH_3PbI_2Br$ and (b) $CH_3NH_3PbI_3$ sensitized TiO_2 NWAs.

Fig. S5 Cross-sectional SEM images of TiO₂ NWAs with different film thickness obtained at different growth time: (a) 4 h, (b) 8 h and (c) 12 h. (d) Photovoltaic properties of hybrid solar cells based on CH₃NH₃PbI₂Br and TiO₂ NWAs with different film thickness.

Table S1 Photovoltaic properties of the hybrid solar cells based on the CH₃NH₃PbI₂Br perovskite sensitizer and 1D TiO₂ NWAs with different film thickness

Film thickness	J_{sc} (mA/cm ²)	$V_{oc}\left(\mathrm{V} ight)$	FF	η (%)
Sample (a) (~1.1 µm)	8.82	0.81	0.55	3.95
Sample (b) (~1.5 μm)	10.12	0.82	0.59	4.87
Sample (c) (~2.3 µm)	9.30	0.79	0.52	3.78

^{*a*} The estimated error is $\pm 5\%$. 1D TiO₂ NWAs with different film thickness were obtained by varying the hydrothermal growth time (*t*): Sample (a) 4 h, Sample (b) 8 h, Sample (c) 12 h; Growth temperature: *T* = 180 °C.