Experimental

Loading ssCP-MSNs with Rhodamine B (RhB) and gel retardation assay of ssCP-MSNs/RhB

The ssCP-MSNs (0.15 g) was added to 3.00 mL anhydrous ethanol solution of RhB (5.00 mM). The solution mixture was stirred at room temperature for 24 h to allow RhB to be encapsulated by ssCP-MSNs. The resulting ssCP-MSNs/RhB was filtered and washed thoroughly with ethanol, and dried under high vacuum. The loading of RhB (25 μ mol/g) was calculated by subtracting the amount of RhB in the ethanol solution and combined washings from the amount of RhB initially added to the reaction¹. The concentration of RhB was measured by UV-Vis spectrophotometer with absorbance at 554 nm. Surface areas, pore volumes and pore sizes were determined by BET and BJH method.

To compare with the un-blocked ssCP-MSNs, the weight of ssCP-MSNs/RhB was converted to the weight of ssCP-MSNs according to the RhB loading ratio of ssCP-MSNs (25 μ mol/g). To prepare each ssCP-MSNs/siRNA complexes, 0.5 μ g siRNA was incubated with a predetermined amount of ssCP-MSNs at r.t. in DEPC for 1h. Then the complexes were mixed with 4 μ L of 6 \times loading buffer (Takara Biotechnology, Dalian, Liaoning Province, China), and then the mixture was loaded onto 2% agarose gel containing 5 μ g/mL ethidium bromide. Electrophoresis was carried out at a voltage of 120 V for 20 min in 1 \times TAE running buffer. Finally, the results were recorded at UV light wavelength 254 nm with image master VDS thermal imaging system (Bio-Rad, Hercules, CA).

1. Y. N. Zhao, B. G. Trewyn, Slowing, II and V. S. Y. Lin, *Journal of the American Chemical Society*, 2009, **131**, 8398-+.

Before

sonication

0 h

24 h

Figure S1. (a) BET nitrogen sorption isotherms of MSN_2 , MSN_{10} and ssCP-MSNs. (b) BJH pore size distribution of MSN_2 , MSN_{10} and ssCP-MSNs. (c) TEM images and (d) DLS study of ssCP-MSNs. (e) The stability of ssCP-MSNs in water before/after the sonication (80 W for 30 s).

48 h

After sonication

72 h

Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemist <mark>@</mark> 2013	Samples	Zeta Potential (mV)
-	MSN ₂	-18 ± 0.4
	MSN_{10}	-12 ± 0.5
	CP-MSNs	27.1 ± 0.5
	ssCP-MSNs/siRNA 15:1	17.6 ± 1
:	ssCP-MSNs/siRNA 22.5:1	18.5 ± 0.9
	ssCP-MSNs/siRNA 30:1	24.6 ± 0.7

Figure S2. (a) zeta-potential of ssCP-MSNs and ssCP-MSNs/siRNA complexes. (b) Agarose gel electrophoresis retardation assay of ssCP-MSNs/siRNA complexes at different w/w ratios of ssCP-MSNs to siRNA. (c) Agarose gel electrophoresis of ssCP-MSNs with blocked pores/siRNA at different w/w ratios of ssCP-MSNs to siRNA. The weight of ssCP-MSNs/RhB was converted to the weight of ssCP-MSNs according to the RhB loading ratio of ssCP-MSNs (25 µmol/g).

Figure S3. Cell viabilities of ssCP-MSNs/siRNA complexes at different w/w ratios *in vitro* were evaluated using (a) HepG2 cells and (b) 293A cells.

Figure S4. Percentages of cellular uptake and mean fluorescence intensity of ssCP-MSNs/ FAMsiRNA complexes. Negative control was the group without any treatment.

Figure S5. *In vivo* Cy5-siRNA distribution in mice at 6 days after intravenous injection of 50 μ g/mouse of Cy5-siRNA to C57 mice with ssCP-MSNs at the w/w = 22.5:1 (duplicate samples).

Figure S6. (a) *In vivo* siRNA distribution in liver at 4 h after intravenous injection determined by CLSM.

Figure S6. (b) *In vivo* siRNA distribution in lung at 4 h after intravenous injection determined by CLSM.

Figure S6. (c) *In vivo* siRNA distribution in spleen at 4 h after intravenous injection determined by CLSM.

Figure S6. (d) *In vivo* siRNA distribution in kidney at 4 h after intravenous injection determined by CLSM.

Figure S6. (e) *In vivo* siRNA distribution in adrenaline at 4 h after intravenous injection determined by CLSM.

Figure S6. (f) *In vivo* siRNA distribution in heart at 4 h after intravenous injection determined by CLSM.

Figure S6. (g) *In vivo* siRNA distribution in thymus at 4 h after intravenous injection determined by CLSM.

Figure S7. *In vivo* Cy5-siRNA distribution in tumors determined by CLSM, in tumorbearing mice at 48 h after intravenous injection of 50 μ g/mouse of Cy5-siRNA to nude mice-bearing HeLa-Luc tumor.

Figure S8. Mean fluorescence intensities of ssCP-MSNs/Cy5-siRNA complexes in isolated organs, at 48 h after intravenous injection of 50 μ g/mouse of Cy5-siRNA to nude mice-bearing HeLa-Luc tumor.

Figure S9. The survival plots and body weight changes of mice after intravenous injection of ssCP-MSNs/siRNA.