Supplementary Information for:

Rechargeable zinc-air battery using Co₃O₄ nanoparticle-modified MnO₂ nanotubes as air-cathode catalysts

Guojun Du,^{a,b} Xiaogang Liu,^{a,b}* Yun Zong,^a T. S. Andy Hor, ^{a,b} Aishui Yu,^c and Zhaolin Liu^a*

^a Institute of Materials Research and Engineering, Agency for Science, Technology and Research

(A*STAR), 3 Research Link, Singapore 117602, Singapore.

Fax: 65-68720785; Tel: 65-68727532; E-mail: zl-liu@imre.a-star.edu.sg

^b Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

Tel: 65-65161352; E-mail: chmlx@nus.edu.sg

^c Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, China

Fig. S1. The photo of the home-made zinc-air cell device.

A home-made zinc-air cell device was designed for the battery test. The air electrode was prepared by spraying the catalyst onto a gas diffusion layer (SGL Carbon paper, Germany, 2 cm \times 2 cm) to achieve a loading of 2 mg cm⁻². The electrolyte used in the zinc-air battery was 6 M KOH, and a polished zinc plate was used as the anode.

Fig. S2. XPS spectrum of MnO₂/Co₃O₄ hybrid nanomaterials.

X-ray photoelectron spectroscopy (XPS) was utilized to probe the Mn, Co, O and C elements of the hybrid nanomaterials.

Fig. S3. Power densities of the zinc-air battery using MnO_2 nanotubes and MnO_2/Co_3O_4 hybrid nanomaterials as bifunctional air cathode catalysts.

The maximum power density of the MnO_2 nanotubes and MnO_2/Co_3O_4 hybrid nanomaterials is 36 and 33 mW/cm² at 25 °C, respectively.