Supplementary Information

Carbon and graphene double protection strategy to improve the SnO_x electrode performance anodes for lithium-ion batteries

Jian Zhu, Danni Lei, Guanhua Zhang, Bingan Lu^{*} and Taihong Wang^{*}

Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Hunan, P.R. China.

Figure S1

Figure S1. Nitrogen adsorption/desorption isotherms and the corresponding BJH distributions (inset) of the $SnO_x@C@G$ composite. The average pore diameter of the sample is about 3.8 nm, determined by the BJH method.

Figure S2

Figure S2. Charge and discharge curves of SnO_x@C@G composite obtained at the 1st, 2nd, 5th, 10th, 20th cycles at the current density of 70 mA g⁻¹.

Figure S3

Figure S3. The cycling performances of $SnO_x@C@G$ composite cycled between a voltage of 0.01-2 V and 0.01-3 V at the current density of 70 mA g⁻¹.

Fig S2 shows the charge and discharge profiles of the $SnO_x@C@G$ composite with a voltage range of 0.01–2 V. It exhibits large first discharge and charge capacities of about 1313.1 and 849.8 mAh g⁻¹, corresponding to a Coulombic efficiency of about 64.7%. The cycling properties of $SnO_x@C@G$ composite in the potential range of 0.01-2 V and 0.01-3 V are shown in Fig S3, the reversible capacity is about 630.8 mAh g⁻¹ after 50 cycles. Compared with voltage range of 0.01-3 V, $SnO_x@C@G$ composite with a voltage range of 0.01–2 V has lower first discharge capacity but better Cycle stability.

Figure S4

Figure S4 Electrochemical impedance spectra (EIS) for the cells of pure SnO_2 (red), $SnO_x@CNF$ (blue) and $SnO_x@C@G$ composite (black).