Electronic Supplementary Information (ESI) for:

Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities

Haichun Liu,^{*a*,*} Can T. Xu,^{*a*} David Lindgren,^{*b*} Haiyan Xie,^{*a*} Diana Thomas,^{*c*} Carsten Gundlach,^{*c*§} and Stefan Andersson-Engels^{*a*}

^a Division of Atomic Physics, Department of Physics, Lund University, P.O. Box 118, S-221 00 Lund, Sweden. <u>haichun.liu@fysik.lth.se</u>

^b Division of Solid State Physics, Department of Physics, Lund University, P.O. Box 118, S-221 00 Lund, Sweden.

^c MAX IV Laboratory, Lund University, P.O. Box 118, S-221 00 Lund, Sweden.

[§]Present address: Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark

Content:

S1. Rate equation analysis for the NIR UC emission of Yb³⁺/Tm³⁺ codoped system

S2. Rate equation analysis for the green UC emission of Yb³⁺/Er³⁺ codoped system

S3. Rate equation analysis for the green UC emission of Yb³⁺/Ho³⁺ codoped system

S4. The derivation of the analytical expression for the slope efficiency of the power-density dependence curve

S1. Rate equation analysis for the NIR UC emission of Yb³⁺/Tm³⁺ codoped system

The mechanism of the NIR UC emission in Yb³⁺/Tm³⁺ codoped nanoparticles is depicted in Fig. S1. First, the Tm³⁺ ion at state ³H₆ is excited to state ³H₅ through a phonon-assisted energy transfer from an excited Yb³⁺ ion. Subsequently, the Tm³⁺ ion relaxes non-radiatively to the lower state ³F₄ and is further excited to state ³F_{2,3} through a second energy transfer process from excited Yb³⁺ to the Tm³⁺ ion. Finally, the Tm³⁺ ion at state ³F_{2,3} decays to state through an efficient non-radiative relaxation, and the NIR UC emission at 800 nm is generated by the transition of ³H₄→³H₆.

Fig. S1 Schematic energy level diagrams of the Yb³⁺ and Tm³⁺ ions and the proposed UC mechanism following the excitation of 975-nm light.

The contribution of radiative rates to the depletion of states ${}^{3}H_{5}$ and ${}^{3}F_{2,3}$ are much less than their nonradiative decay rates, thus are omitted in the following discussion. Then the power-density dependent behavior of the NIR UC emission intensity under CW excitation can be described by the following steady rate equations:

$$\frac{dN_{Yb1}}{dt} = \sigma \rho N_{Yb0} - \frac{N_{Yb1}}{\tau_{Yb1}} = 0 , \qquad (S1.1a)$$

$$\frac{\mathrm{d}N_1'}{\mathrm{d}t} = C_0 N_0 N_{\mathrm{Yb1}} - \beta_1' N_1' = 0 , \qquad (S1.1b)$$

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = \beta_1' N_1' - C_1 N_1 N_{\mathrm{Yb1}} - \frac{N_1}{\tau_1^{\mathrm{rad}}} = 0 , \qquad (S1.1c)$$

$$\frac{\mathrm{d}N_2'}{\mathrm{d}t} = C_1 N_1 N_{\mathrm{Yb1}} - \beta_2' N_2' = 0 , \qquad (S1.1d)$$

$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = \beta_2' N_2' - \frac{N_2}{\tau_2^{\mathrm{rad}}} = 0 , \qquad (S1.1e)$$

where N_0 , N_1 , N'_1 , N_2 and N'_2 denote the population densities of the states ${}^{3}H_6$, ${}^{3}F_4$, ${}^{3}H_5$, ${}^{3}H_4$ and ${}^{3}F_{2,3}$ of Tm³⁺ ions, respectively, while N_{Yb0} and N_{Yb1} are the population densities of the states ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ of Yb³⁺ ions, respectively; σ denotes the absorption cross-section of Yb³⁺ ion; ρ is the excitation photon flux, which is linearly related with power-density; τ_1^{rad} and τ_2^{rad} are the radiative lifetimes of Tm³⁺ ions at states ${}^{3}F_4$ and ${}^{3}H_4$; τ_{Yb1} is the lifetime of Yb³⁺ ions at ${}^{2}F_{5/2}$ state; C_0 , and C_1 are ETU rates from excited Yb³⁺ ions to the Tm³⁺ ions at states ${}^{3}H_6$ and ${}^{3}F_4$, respectively; β'_1 and β'_2 represent the non-radiative decay rates for ${}^{3}H_5 \rightarrow {}^{3}F_4$ and ${}^{3}F_{2,3} \rightarrow {}^{3}H_4$, respectively. In this model, the depletion of the population density of the ${}^{2}F_{5/2}$ (Yb³⁺) state due to ETU process is omitted, because the ETU rates at the ${}^{2}F_{5/2}$ (Yb³⁺) state are much lower than its linear decay rate. For the same reason, the contribution to the depletion of state ${}^{3}H_4$ due to ETU to even higher states is not considered either. Under these assumptions, the population densities of different levels at steady state can be obtained from eqns (S1.1a) - (S1.1e)

$$N_{\rm Yb1} = \tau_{\rm Yb1} \sigma N_{\rm Yb0} \rho , \qquad (S1.2a)$$

$$N_{1}' = \frac{c_{0}N_{0}N_{Yb1}}{\beta_{1}'} = \frac{c_{0}N_{0}\tau_{Yb1}\sigma_{NYb0}\rho}{\beta_{1}'},$$
 (S1.2b)

$$N_{1} = \frac{C_{0}N_{0}N_{Yb1}}{\frac{1}{\tau_{1}^{rad}} + C_{1}N_{Yb1}} = \frac{C_{0}N_{0}\tau_{Yb1}\sigma_{Yb0}\rho}{\frac{1}{\tau_{1}^{rad}} + C_{1}\tau_{Yb1}\sigma_{N_{Yb0}}\rho} , \qquad (S1.2c)$$

$$N_{2}' = \frac{c_{1}N_{1}N_{Yb1}}{\beta_{2}'} = \frac{c_{0}c_{1}N_{0}(\tau_{Yb1}\sigma N_{Yb0}\rho)^{2}}{\beta_{2}'(\frac{1}{\tau_{1}^{rad}} + c_{1}\tau_{Yb1}\sigma N_{Yb0}\rho)},$$
(S1.2d)

$$N_{2} = \tau_{2}^{\text{rad}} \beta_{2}' N_{2}' = \frac{\tau_{2}^{\text{rad}} c_{0} c_{1} N_{0} (\tau_{\text{Yb1}} \sigma N_{\text{Yb0}} \rho)^{2}}{\frac{1}{\tau_{1}^{\text{rad}}} + c_{1} \tau_{\text{Yb1}} \sigma N_{\text{Yb0}} \rho}.$$
(S1.2e)

Thus, the power-density dependence of the UC steady-state emission from state ³H₄ has the form of

$$I = \frac{N_2}{\tau_2^{\text{rad}}} hv = \frac{C_0 C_1 \tau_{\text{Yb1}}^2 N_0 hv \sigma^2 N_{\text{Yb0}}^2 \rho^2}{\frac{1}{\tau_1^{\text{rad}}} + C_1 \tau_{\text{Yb1}} \sigma N_{\text{Yb0}} \rho} .$$
 (S1.3)

S2. Rate equation analysis for the green UC emission of Yb³⁺/Er³⁺ codoped system

The mechanism of the NIR UC emission in Yb³⁺/Er³⁺ codoped nanoparticles is depicted in Fig. S2. As seen, the Er³⁺ is promoted from the ground state ⁴I_{15/2} to the ⁴F_{7/2} state through two ETU processes from excited Yb³⁺ ions. Then the Er³⁺ ion relaxes non-radiatively to the lower states ²H_{11/2}/⁴S_{3/2}, and generates green UC emissions through the transition of ²H_{11/2}/⁴S_{3/2}→⁴I_{15/2}.

Fig. S2 Schematic energy level diagrams of the Yb³⁺ and Er³⁺ ions and the proposed UC mechanism following the excitation of 975-nm light.

The power-density dependent behavior of the green UC emission intensity under CW excitation can be described by the following rate equation model:

$$\frac{dN_{Yb1}}{dt} = \sigma \rho N_{Yb0} - \frac{N_{Yb1}}{\tau_{Yb1}} = 0 , \qquad (S2.1a)$$

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = C_0 N_0 N_{\mathrm{Yb1}} - C_1 N_1 N_{\mathrm{Yb1}} - \beta_1 N_1 - \frac{N_1}{\tau_1^{\mathrm{rad}}} = 0 , \qquad (S2.1b)$$

$$\frac{\mathrm{d}N_2'}{\mathrm{d}t} = C_1 N_1 N_{\mathrm{Yb1}} - \beta_2' N_2' = 0 , \qquad (S2.1c)$$

$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = \beta_2' N_2' - \beta_2 N_2 - \frac{N_2}{\tau_2^{\mathrm{rad}}} = 0 , \qquad (S1.1d)$$

where N_0 , N_1 , N_2 and N'_2 denote the population densities of the states ${}^4I_{15/2}$, ${}^4I_{11/2}$, ${}^2H_{11/2}/{}^4S_{3/2}$ and ${}^4F_{7/2}$ of Er^{3+} ions, respectively, while N_{Yb0} and N_{Yb1} are the population densities of the states ${}^2F_{7/2}$ and ${}^2F_{5/2}$ of Yb^{3+} ions, respectively; σ denotes the absorption cross-section of Yb^{3+} ion; ρ is the excitation photon flux, which is linearly related with power-density; τ_1^{rad} and τ_2^{rad} are the radiative lifetimes of Er^{3+} ions at states ${}^4I_{11/2}$ and ${}^2H_{11/2}/{}^4S_{3/2}$; τ_{Yb1} is the lifetime of Yb^{3+} ions at ${}^2F_{5/2}$ state; C_0 , and C_1 are ETU rates from excited Yb^{3+} ions to the Er^{3+} ions at states ${}^4I_{15/2}$ and ${}^4I_{11/2}$, respectively; β_1 , β_2 and β'_2 represent the non-radiative decay rate for ${}^4I_{11/2} \rightarrow {}^4I_{13/2}$, ${}^4F_{7/2} \rightarrow {}^2H_{11/2}/{}^4S_{3/2}$, and ${}^2H_{11/2}/{}^4S_{3/2} \rightarrow {}^4F_{9/2}$, respectively. In this model, the depletion of the population density of ${}^2F_{5/2}$ (Yb³⁺) state due to ETU process is omitted, because the ETU rates at ${}^2F_{5/2}$ (Yb³⁺) state are much lower than its linear decay rate. For the same reason, the contribution to the depletion of state ${}^2H_{11/2}/{}^4S_{3/2}$ due to ETU to even higher states is not considered either. Under these assumptions, the population densities of different levels at steady state can be obtained from eqns (S2.1a) - (S2.1d)

$$N_{\rm Yb1} = \tau_{\rm Yb1} \sigma N_{\rm Yb0} \rho , \qquad (S2.2a)$$

$$N_{1} = \frac{C_{0}N_{0}N_{Yb1}}{\frac{1}{\tau_{1}^{rad}} + \beta_{1} + C_{1}N_{Yb1}} = \frac{C_{0}N_{0}\tau_{Yb1}\sigma N_{Yb0}\rho}{\frac{1}{\tau_{1}^{rad}} + \beta_{1} + C_{1}\tau_{Yb1}\sigma N_{Yb0}\rho} ,$$
(S2.2b)

$$N_{2}' = \frac{c_{1}N_{1}N_{Yb1}}{\beta_{2}'} = \frac{c_{0}c_{1}N_{0}(\tau_{Yb1}\sigma N_{Yb0}\rho)^{2}}{\beta_{2}'(\frac{1}{\tau_{1}^{rad}} + \beta_{1} + c_{1}\tau_{Yb1}\sigma N_{Yb0}\rho)},$$
(S2.2c)

$$N_{2} = \frac{\beta_{2}' N_{2}'}{\frac{1}{\tau_{2}^{\text{rad}}} + \beta_{2}} = \frac{C_{0}C_{1}N_{0}(\tau_{\text{Yb1}}\sigma N_{\text{Yb0}}\rho)^{2}}{\left(\frac{1}{\tau_{2}^{\text{rad}}} + \beta_{2}\right)\left(\frac{1}{\tau_{1}^{\text{rad}}} + \beta_{1} + C_{1}\tau_{\text{Yb1}}\sigma N_{\text{Yb0}}\rho\right)}.$$
(S2.2d)

Let

$$\frac{1}{\tau_1^{\rm rad}} + \beta_1 = \frac{1}{\tau_1},\tag{S2.3}$$

and

$$\frac{1}{\tau_2^{\rm rad}} + \beta_2 = \frac{1}{\tau_2},\tag{S2.4}$$

where τ_1 and τ_2 are the lifetimes of the state ${}^4I_{11/2}$ and ${}^2H_{11/2}/{}^4S_{3/2}$ of Er^{3+} , respectively, including the contribution of non-radiative decays, then we can obtain the power-density dependence of the green UC steady-state emission from the state ${}^2H_{11/2}/{}^4S_{3/2}$

$$I = \frac{N_2}{\tau_2^{\text{rad}}} hv = \frac{C_0 C_1 \tau_{\text{Yb1}}^2 (\tau_2 / \tau_2^{\text{rad}}) N_0 hv \sigma^2 N_{\text{Yb0}}^2 \rho^2}{\frac{1}{\tau_1} + C_1 \tau_{\text{Yb1}} \sigma N_{\text{Yb0}} \rho} .$$
(S2.5)

S3. Rate equation analysis for the green UC emission of Yb³⁺/Ho³⁺ codoped system

The mechanism of the NIR UC emission in Yb^{3+}/Ho^{3+} codoped nanoparticles is depicted in Fig. S3. As seen, the Ho^{3+} at the ground state ${}^{5}I_{8}$ is promoted to the ${}^{5}I_{6}$ state through one energy transfer from excited Yb^{3+} , and is further promoted to the ${}^{5}S_{2}/{}^{5}F_{4}$ state through another energy transfer from the excited Yb^{3+} ions. The strong green UC emission can then be generated through the transition of ${}^{5}S_{2}/{}^{5}F_{4} \rightarrow {}^{5}I_{8}$.

Fig. S3 Schematic energy level diagrams of the Yb³⁺ and Ho³⁺ ions and the proposed UC mechanism following the excitation of 975-nm light.

The power-density dependent behavior of the green UC emission intensity under CW excitation can be described by the following rate equation model:

$$\frac{dN_{Yb1}}{dt} = \sigma \rho N_{Yb0} - \frac{N_{Yb1}}{\tau_{Yb1}} = 0 , \qquad (S3.1a)$$

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = C_0 N_0 N_{\mathrm{Yb1}} - C_1 N_1 N_{\mathrm{Yb1}} - \beta_1 N_1 - \frac{N_1}{\tau_1^{\mathrm{rad}}} = 0 , \qquad (S3.1b)$$

$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = C_1 N_1 N_{\mathrm{Yb1}} - \beta_2 N_2 - \frac{N_2}{\tau_2^{\mathrm{rad}}} = 0 , \qquad (S3.1c)$$

where N_0 , N_1 , and N_2 denote the population densities of the states ${}^{5}I_{8}$, ${}^{5}I_{6}$, and ${}^{5}S_2/{}^{5}F_4$ of Ho³⁺ ions, respectively, while N_{Yb0} and N_{Yb1} are the population densities of the states ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ of Yb³⁺ ions, respectively; σ denotes the absorption cross-section of Yb³⁺ ion; ρ is the excitation photon flux, which is linearly related with power-density; τ_1^{rad} and τ_2^{rad} are the radiative lifetimes of Ho³⁺ ions at states ${}^{5}I_6$ and ${}^{5}S_2/{}^{5}F_4$; τ_{Yb1} is the lifetime of Yb³⁺ ions at ${}^{2}F_{5/2}$ state; C_0 , and C_1 are ETU rates from excited Yb³⁺ ions to the Ho³⁺ ions at states ${}^{5}I_6$, respectively; β_1 and β_2 represents the non-radiative decay rate for ${}^{5}I_6 \rightarrow {}^{5}I_7$ and ${}^{5}S_2/{}^{5}F_4 \rightarrow {}^{5}F_5$, respectively. In this model, the depletion of the population density of ${}^{2}F_{5/2}$ (Yb³⁺) state due to ETU process is omitted, because the ETU rates at ${}^{2}F_{5/2}$ (Yb³⁺) state are much lower than its linear decay rate. For the same reason, the contribution to the depletion of state ${}^{5}S_2/{}^{5}F_4$ due to ETU to even higher states is not considered either. Under these assumptions, the population densities of different levels at steady state can be obtained from eqns (S3.1a) - (S3.1c)

$$N_{\rm Yb1} = \tau_{\rm Yb1} \sigma N_{\rm Yb0} \rho , \qquad (S3.2a)$$

$$N_{1} = \frac{C_{0}N_{0}N_{Yb1}}{\frac{1}{\tau_{1}^{rad}} + \beta_{1} + C_{1}N_{Yb1}} = \frac{C_{0}N_{0}\tau_{Yb1}\sigma N_{Yb0}\rho}{\frac{1}{\tau_{1}^{rad}} + \beta_{1} + C_{1}\tau_{Yb1}\sigma N_{Yb0}\rho},$$
(S3.2b)

$$N_{2} = \frac{c_{1}N_{1}N_{Yb1}}{\frac{1}{\tau_{2}^{rad}} + \beta_{2}} = \frac{c_{0}c_{1}N_{0}(\tau_{Yb1}\sigma N_{Yb0}\rho)^{2}}{\left(\frac{1}{\tau_{2}^{rad}} + \beta_{2}\right)\left(\frac{1}{\tau_{1}^{rad}} + \beta_{1} + c_{1}\tau_{Yb1}\sigma N_{Yb0}\rho\right)}.$$
 (S3.2c)

$$\frac{1}{\tau_1^{\rm rad}} + \beta_1 = \frac{1}{\tau_1} \,\,, \tag{S3.3}$$

and

$$\frac{1}{\tau_2^{\rm rad}} + \beta_2 = \frac{1}{\tau_2},\tag{S3.4}$$

where τ_1 and τ_2 are the lifetimes of the state ${}^{5}I_6$ and ${}^{5}S_2/{}^{5}F_4$ of Ho³⁺, respectively, including the contribution of non-radiative decays, then we can obtain the power-density dependence of the green UC steady-state emission from the state ${}^{5}S_2/{}^{5}F_4$

$$I = \frac{N_2}{\tau_2^{\text{rad}}} hv = \frac{C_0 C_1 \tau_{\text{Yb1}}^2 (\tau_2 / \tau_2^{\text{rad}}) N_0 hv \sigma^2 N_{\text{Yb0}}^2 \rho^2}{\frac{1}{\tau_1} + C_1 \tau_{\text{Yb1}} \sigma N_{\text{Yb0}} \rho}.$$
(S3.5)

The NIR UC emission originating from Tm^{3+} , the green UC emission from Er^{3+} and the green UC emission from Ho^{3+} have unified form of eqn (3). For the NIR UC emission of Tm^{3+} ,

$$\tau_1 = \tau_1^{\text{rad}} \,. \tag{S3.6}$$

and

$$\tau_2 = \tau_2^{\text{rad}} \,. \tag{S3.7}$$

S4. The derivation of the analytical expression for the slope efficiency the power-density dependence curve

The UC emission has a power-density dependence of

$$I = \frac{a\rho^2}{b+c\rho} , \qquad (S4.1)$$

where

$$a = C_0 C_1 \tau_{Yb1}^2 (\tau_2 / \tau_2^{rad}) N_0 h v \sigma^2 N_{Yb0}^2 , \qquad (S4.2)$$

$$\mathbf{b} = \frac{1}{\tau_1} , \qquad (S4.3)$$

and

$$\mathbf{c} = C_1 \tau_{\rm Yb1} \sigma N_{\rm Yb0} \ . \tag{S4.4}$$

Mathematically, the slope efficiency of the UC emission in a double-logarithmic scale is given by the derivative of $\log I$ over $\log \rho$, *i.e.*,

$$k \equiv \frac{\mathrm{dlog}I}{\mathrm{dlog}\rho} = \frac{\mathrm{dlog}I}{\mathrm{d}\rho} \cdot \frac{\mathrm{d}\rho}{\mathrm{dlog}\rho} = \frac{\mathrm{dlog}\left(\frac{\mathrm{a}\rho^2}{\mathrm{b}+\mathrm{c}\rho}\right)}{\mathrm{d}\rho} \cdot \rho$$

Electronic Supplementary Material (ESI) for Nanoscale This journal is The Royal Society of Chemistry 2013

$$= \frac{\left(\frac{a\rho^2}{b+c\rho}\right)'}{\frac{a\rho^2}{b+c\rho}} \cdot \rho = \frac{\frac{2a\rho(b+c\rho)-ca\rho^2}{(b+c\rho)^2}}{\frac{a\rho^2}{b+c\rho}} \cdot \rho$$
$$= 1 + \frac{1}{1+\frac{c\rho}{b}} = 1 + \frac{1}{1+\tau_1 \cdot c_1 \tau_{Yb1} \sigma N_{Yb0} \rho}$$
(S4.5)