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S1. Rate equation analysis for the NIR UC emission of Yb*/Tm** codoped system

The mechanism of the NIR UC emission in Yb**/Tm** codoped nanoparticles is depicted in Fig. S1.
First, the Tm®" ion at state ®Hs is excited to state *Hs through a phonon-assisted energy transfer from
an excited Yb* ion. Subsequently, the Tm*" ion relaxes non-radiatively to the lower state °F, and is
further excited to state °F,5 through a second energy transfer process from excited Yb** to the Tm®"
ion. Finally, the Tm** ion at state °F,; decays to state through an efficient non-radiative relaxation, and
the NIR UC emission at 800 nm is generated by the transition of *H,—>Hs.
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Fig. S1 Schematic energy level diagrams of the Yb** and Tm** ions and the proposed UC mechanism
following the excitation of 975-nm light.

The contribution of radiative rates to the depletion of states Hs and 3F2,3 are much less than their non-
radiative decay rates, thus are omitted in the following discussion. Then the power-density dependent
behavior of the NIR UC emission intensity under CW excitation can be described by the following
steady rate equations:

dNyp1 _ apNypo — Nyb1 _ , (S1.1a)
dt TYb1
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where No, N3, N, N, and N, denote the population densities of the states *Hs, *F4, *Hs, *H, and 3F 5 of
Tm*" ions, respectively, while Ny and Nyy,; are the population densities of the states 2F,;, and %F5, of
Yb* ions, respectively; o denotes the absorption cross-section of Yb®" ion; p is the excitation photon
flux, which is linearly related with power-density; 7524 and 7524 are the radiative lifetimes of Tm®*
ions at states °F, and *Hy; Ty, is the lifetime of Yb** ions at ?Fs, state; Co, and C; are ETU rates from
excited Yb** ions to the Tm® ions at states *Hg and °F,, respectively; B; and B, represent the non-
radiative decay rates for *Hs—°F, and 3F,5—°H,, respectively. In this model, the depletion of the
population density of the ?Fs;, (Yb**) state due to ETU process is omitted, because the ETU rates at the
’Fe), (Yb?’*) state are much lower than its linear decay rate. For the same reason, the contribution to the
depletion of state ®H, due to ETU to even higher states is not considered either. Under these
assumptions, the population densities of different levels at steady state can be obtained from egns
(S1.1a) - (S1.1e)

Nyp1 = Typ10Nypop (S1.2a)
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Thus, the power-density dependence of the UC steady-state emission from state *H, has the form of
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S2. Rate equation analysis for the green UC emission of Yb*'/Er®* codoped system

The mechanism of the NIR UC emission in Yb*"/Er** codoped nanoparticles is depicted in Fig. S2. As
seen, the Er®* is promoted from the ground state *l;s, to the *F;, state through two ETU processes
from excited Yb®" ions. Then the Er** ion relaxes non-radiatively to the lower states ?Hi1/,/*Ss, and
generates green UC emissions through the transition of 2Hyy,/*Ss,—*115/5.

Yb* Er¥

Fig. S2 Schematic energy level diagrams of the Yb** and Er** ions and the proposed UC mechanism
following the excitation of 975-nm light.

The power-density dependent behavior of the green UC emission intensity under CW excitation can be

described by the following rate equation model:

dNyb1
dt

dN,
dt

dn;,

N
= opNypo — T:;f =0, (S2.1a)
N
—— = CoNoNyp1 — C;N1Nypy — 1Ny — T{ﬁ =0, (S2.1b)

de



Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013

= BNy = BNy — 2 =0, (S1.1d)
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where No, N3, N2 and N, denote the population densities of the states *lis, *l11/2, ?Hi110/*Sa2 and *Fp; of
Er** ions, respectively, while Nypo and Nvy,; are the population densities of the states 2F,;, and %Fs, of
Yb®" ions, respectively; o denotes the absorption cross-section of Yb®" ion; p is the excitation photon
flux, which is linearly related with power-density; 7724 and 7529 are the radiative lifetimes of Er*" ions
at states *l11;, and 2Hyyo/*Saz; Typy IS the lifetime of Yb®* ions at ?Fs, state; Co, and C; are ETU rates
from excited Yb®* ions to the Er** ions at states *lys, and “*l11,, respectively; B;, B, and B, represent
the non-radiative decay rate for *li1,—*l13, “F7p —?Hiua/*Ss, and 2Hyyol*Ss—*Fon, respectively. In
this model, the depletion of the population density of 2Fs, (Yb**) state due to ETU process is omitted,
because the ETU rates at °Fs), (Yb3+) state are much lower than its linear decay rate. For the same
reason, the contribution to the depletion of state 2H,1,0/*S3, due to ETU to even higher states is not
considered either. Under these assumptions, the population densities of different levels at steady state
can be obtained from eqns (S2.1a) - (S2.1d)

Nyp1 = Tyb10NypoP (S2.2a)
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Let
1 1
F + ﬁl = ; , (82.3)
and

1 1
where 7, and 7, are the lifetimes of the state *l;,, and 2H,15*Ss), Of Er¥, respectively, including the
contribution of non-radiative decays, then we can obtain the power-density dependence of the green
UC steady-state emission from the state ?H1//*S3»

N CoC1T2h 4 (T2 /TN NGhv a2 NS,  p?
I = 2 hy = 0C1Typ1 (T2/72°")No YboP. ' (825)

— .rad 1
T2 H+C1TYb10NYb0P

S3. Rate equation analysis for the green UC emission of Yb*/Ho* codoped system

The mechanism of the NIR UC emission in Yb*/Ho*" codoped nanoparticles is depicted in Fig. S3.
As seen, the Ho®* at the ground state °lg is promoted to the °lg state through one energy transfer from
excited Yb**, and is further promoted to the °S,/°F, state through another energy transfer from the
excited Yb* ions. The strong green UC emission can then be generated through the transition of
*So°Fy —°lg.
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Fig. S3 Schematic energy level diagrams of the Yb*" and Ho®* ions and the proposed UC mechanism
following the excitation of 975-nm light.

The power-density dependent behavior of the green UC emission intensity under CW excitation can be
described by the following rate equation model:

dn N

d—ibl = 0pNypo — T;‘: =0, (S3.1a)

dn N

d_tl = CoNoNyp; — C1N1Nyp; — 1Ny — Tg_ald =0, (S3.1b)

dn. N

d_tz = C;N1Nyp1 — BN, — Trﬁ =0, (S3.1c)
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where No, Ny, and N, denote the population densities of the states °lg, °ls, and °S,/°F4 of Ho®" ions,
respectively, while Nyyo and Ny, are the population densities of the states 2Fy, and %Fs, of Yb*" ions,
respectively; o denotes the absorption cross-section of Yb** ion; p is the excitation photon flux, which
is linearly related with power-density; 724 and 7529 are the radiative lifetimes of Ho®" ions at states °lg
and °S,/°F4; Typ is the lifetime of Yb®" ions at ?Fs), state; Co, and C, are ETU rates from excited Yb**
ions to the Ho®" ions at states *lgand °lg, respectively; 8; and B, represents the non-radiative decay rate
for °1s—°1; and °S,/°F, —°Fs, respectively. In this model, the depletion of the population density of
’Fs» (Yb®") state due to ETU process is omitted, because the ETU rates at *Fs, (Yb®") state are much
lower than its linear decay rate. For the same reason, the contribution to the depletion of state °S,/°F,
due to ETU to even higher states is not considered either. Under these assumptions, the population
densities of different levels at steady state can be obtained from eqgns (S3.1a) - (S3.1c)

Nyp1 = Typ10Nypop (S3.2a)

CoNoN CoNoT oN
N1 — oNoNyb1 _ 0NoTyb19NYboP (S3.2b)
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where 7, and T, are the lifetimes of the state °lIsand °S,/°F4 of Ho*", respectively, including the

contribution of non-radiative decays, then we can obtain the power-density dependence of the green
UC steady-state emission from the state °S,/°F,

2 2
_ CoC1Typy (T2/T52YNohva2 NZ  p?
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rad
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(S3.5)

The NIR UC emission originating from Tm*", the green UC emission from Er®* and the green UC
emission from Ho®* have unified form of eqn (3). For the NIR UC emission of Tm*",

T, = 1hd | (S3.6)
and

7, = 75ad (S3.7)

S4. The derivation of the analytical expression for the slope efficiency the power-density
dependence curve

The UC emission has a power-density dependence of

ap?

= (S4.1)
where

a= C0C1T§2(b1(Tz/Tgad)NohvazNgbo ' (54.2)

b= i , (S4.3)
and

¢ = C1Typ10Nypo - (S4.4)

Mathematically, the slope efficiency of the UC emission in a double-logarithmic scale is given by the
derivative of logl over logp, i.e.,

dlog(-222
dlogl dlogl_ dp 08 b+cp)

k dlogp - dp dlogp - dp
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