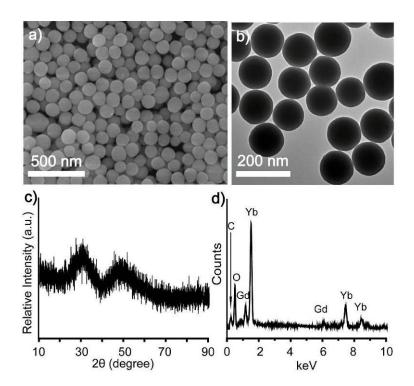
Supporting Information for

PEGylated Hybrid Ytterbia Nanoparticles as a High-Performance Diagnostic Probe for In Vivo Magnetic Resonance and X-ray Computed Tomography Imaging with Low Systemic Toxicity

Zhen Liu,^{a, b} Fang Pu,^a Jianhua Liu,^c Liyan Jiang,^d Qinghai Yuan,^c Zhengqiang Li,^d Jinsong Ren,^{*, a} and Xiaogang Qu^{*, a}


^a State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (P.R. China)

Fax: (+86) 0431-85262625 E-mail: jren@ciac.jl.cn

^b Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (P.R. China)

^c Department of Radiology, Second Hospital of Jilin University, Changchun, Jilin, 130041 (P.R. China)

^d College of Life Science, Jilin University, Changchun, Jilin, 130012 (P.R. China)

Figure S1. SEM image (a), TEM image (b), wide-angle XRD pattern (c), as well as EDS spectrum of the precursor Yb(OH)CO₃:Gd nanoparticles.

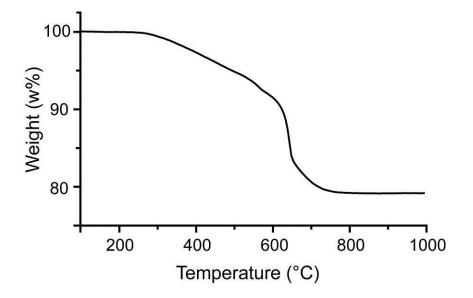


Figure S2. Thermogravimetric analysis curve of the precursor Yb(OH)CO₃:Gd nanoparticles in air.

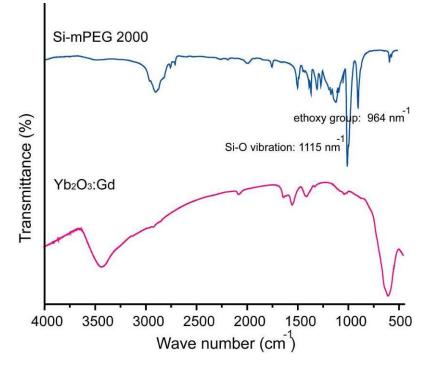


Figure S3. FTIR spectra of silanated mPEG and Yb₂O₃:Gd nanoparticles.

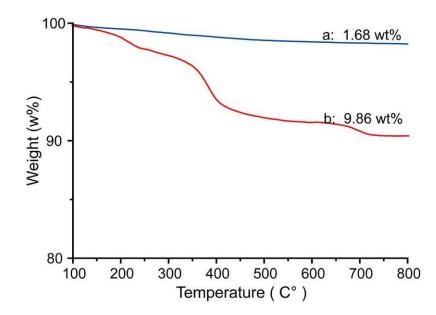


Figure S4. Thermogravimetric analysis curves of Yb_2O_3 :Gd nanoparticles (a) and PEG-Yb_2O_3:Gd

nanoparticles (b).

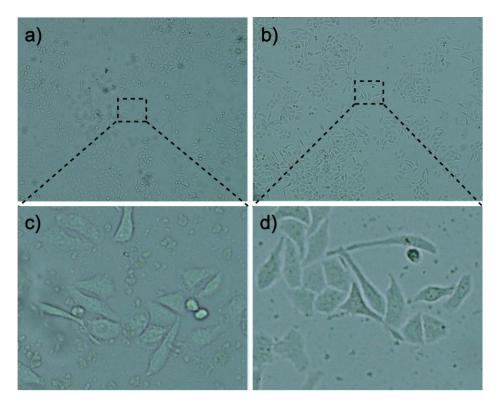
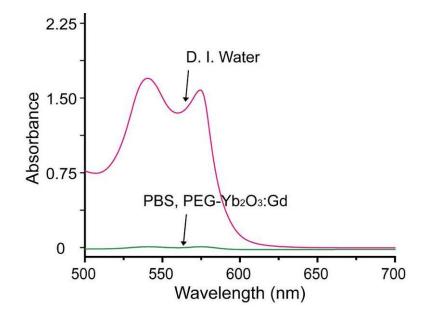
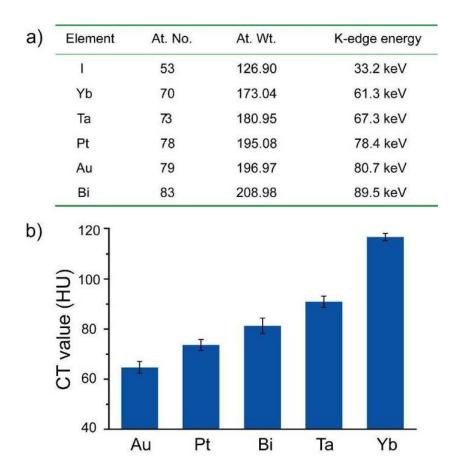




Figure S5. Microscopic images of HepG2 cells incubated without (a) and with (b) PEG-Yb₂O₃:Gd

nanoparticles for 48 h. Amplificatory images: without nanoparticles (c) and with nanoparticles (d).

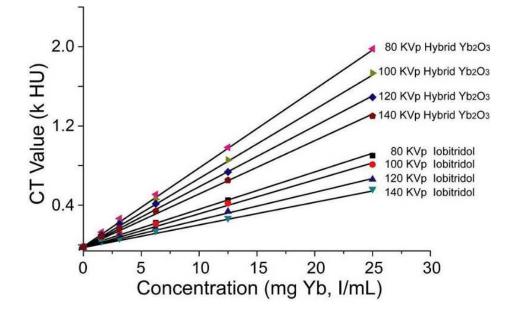


Figure S6. UV-vis absorption spectra to detect the presence of hemoglobin in the supernatant of $PEG-Yb_2O_3$:Gd nanoparticles by using D.I. water and PBS as the positive and negative controls, respectively.

Figure S7. Physicochemical characterization of various CT-related elements (a), CT values of different metallic salts dispersed in ethanol with metal concentration of 10 mg mL⁻¹ at clinical 120 KVp voltage (b).

r p voltage (0).

Figure S8. CT values of the Iobitridol and PEG-Yb₂O₃:Gd nanoparticles with different concentrations determined at various clinical voltages.

Figure S9. X-ray image of nude mouse after subcutaneous injection of PEG-Yb₂O₃:Gd nanoparticles.

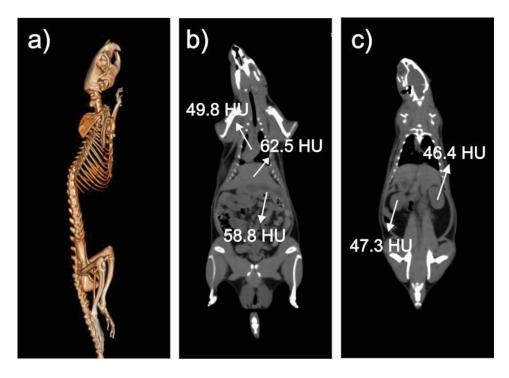


Figure S10. In vivo CT 3D-renderings (a) and coronal view images (b, c) of the rat one month after

intravenous injection of PEG-Yb₂O₃:Gd nanoparticles.

Table S1. Exact value of hemolysis percentage upon PEG-Yb₂O₃:Gd nanoparticles with different concentrations.

Concentrations (mg Yb mL ⁻¹)	Value of hemolysis (%)
PBS	0
water	100
0.078125	-0.023
0.15625	0.016
0.3125	0.088
0.625	-0.102
0.125	0.127
0.25	0.089
0.50	0.142
1.00	0.244

Table S2. CT values of the heart, liver, spleen, kidneys, and bladder of a rat before and after intravenous administration of 1 mL of PEG-Yb₂O₃:Gd solution (50 mg Yb mL⁻¹) at different timed intervals.

Time	Heart	Liver	Spleen	Kidneys	Bladder
Pre-injection	49.3	60.7	57.1	49.3/48.7	50.8
30 min	62.2	95.8	79.5	47.6/49.2	51.9
60 min	57.3	124.3	107.6	49.5/47.8	49.7
90 min	53.7	153.4	128.7	47.2/48.6	50.3
120 min	50.6	176.8	156.9	49.1/48.7	49.8

Table S3. CT values of the heart, liver, spleen, kidneys, and bladder of a rat before and after intravenous administration of 0.3 mL of Iobitridol (350 mg I mL^{-1}) at different timed intervals.

Time	Heart	Liver	Spleen	Kidneys	Bladder
Pre-injection	51.7	61.4	56.8	47.3/48.6	51
5 min	49.4	62.4	55.9	457.1/459.8	52.4
15 min	50.3	59.8	57	365.7/359.6	642.1
30 min	50.3	61	56.8	269.3/273.1	843.7
60 min	51.1	60.7	55.4	48.8/48.2	521.3

 Table S4. Pathological inflammatory responses of various viscera 30 d after intravenous administration.

Samples	Grade of	Lymphocytes	Macrophages	Neutrophilis	Eosinophils
	Inflammation				
Heart	Low	+-	+-	+-	+-
Liver	Low	+	+	+	+-
Spleen	Low	+	+	+	+-
Lung	Low	+-	+-	+-	+-
Kidney	Low	+-	+-	+-	+-

 Table S5.
 Hematology analysis and blood biochemical assay 30 days after intravenous administration.

Test	Unit	Control group (mean \pm sd)	Treatment group (mean±sd)
blood cell count (WBC)	$\times 10^{9}/L$	9.1±2.7	9.7±3.2
red cell count (RBC)	$ imes 10^{12}/L$	9.2±1.3	9.4±1.9
hemoglobin (HGB)	g/L	158.7±34.5	168.5±44.3
mean corpuscular hemoglobin	pg	17.3±2.1	16.8±3.1
(MCH)			
mean corpuscular hemoglobin	g/L	318±18.3	324±23.6
concentration (MCHC)			
alanine aminotransferase	U/L	44.5±8.5	47.3±9.8
(ALT)			
aspartate aminotransferase	U/L	160.4±32.5	175.3±42.1
(AST)			
blood urea nitrogen (BUN)	$\times \ 10^6 / \mu L$	8.6±1.9	9.1±2.3
plasma creatinine (CRE)	$\times ~10^3\!/\mu L$	22.8±3.1	29.6±4.7