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I. DETAILS OF THE AB-INITIO CALCULATION OF MOLECULAR VIBRATIONS AND INELASTIC SPECTRA OF ODT
BETWEEN TWO AU ELECTRODES

The theoretical calculations were performed using previously reported methods (Jafri et al., 2010; Prasongkit et al.,
2010). Using the density functional theory (DFT) based code SIESTA(Soler et al., 2002), the ODT adsorption
structures were first optimized between two Au(111) surfaces and followed by phonon calculations. The IETS was
calculated in the lowest order expansion (LOE) method (Paulsson et al., 2006) where TranSIESTA (Brandbyge
et al., 2002) is used to calculate the elastic electron transport which is combined with the electron-phonon (e-ph)
couplings in Inelastica(Frederiksen et al., 2007) to calculate the inelastic response. All calculations were performed
using the local-density approximation (LDA) for the exchange correlation potential, core electrons were modeled
with Troullier–Martins soft norm-conserving pseudopotentials (Troullier and Martins, 1991) and the valence electrons
were expanded in a double-zeta with polarization orbitals (DZP) basis set of local orbitals for all atoms except Au
were a single-zeta polarized (SZP) were used(Junquera et al., 2001). To apply LOE the system needs to have a
weak e-ph coupling and the density of states close to Fermi energy should vary slowly. This can be justified by
the transmission spectra in Fig. S1 which has no sharp peaks close to the Fermi energy, hence the conductance is
almost bias independent. It has also been shown that less then 3% of the electrons undergo inelastic scattering for
alkanethiols(Okabayashi et al., 2008).

The calculated IETS for the ODT molecule sandwiched between two gold surfaces are shown in Fig. S2 together
with the most important vibrations modes influencing the current. These modes are Eν1 ∼ 40 meV (Au-S stretch),
Eν2 ∼ 80 meV (C-S stretch), Eν3 ∼ 110 meV (CH2 twist), Eν4 ∼ 122 meV and Eν5 ∼142 meV (two different modes
of C-C stretch)
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Figure S1: Zero-bias transmission for ODT molecule sandwiched between two gold electrodes
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(a) Inelastic spectra (b) Au-S stretch (40 meV) (c) C-S stretch (80 meV)

(d) CH2 twist (110 meV) (e) C-C stretch (122 meV) (f) C-C stretch (140 meV)

Figure S2: (a) Inelastic spectra (d2I/dV 2) for a ODT molecule between gold electrodes. (b)-(f) The five vibration
modes with most influence on the current. Au-S stretch, C-S stretch, CH2 twist and two different C-C stretch
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II. MODEL OF CARRIER TRANSPORT THROUGH THE MOLECULAR JUNCTIONS

A. Model of the set-up and charge current

We assume that the molecules function only as vibrating tunnel barriers with no electronic level that take an active
part in the conduction. We therefore propose to employ the model

H =HL/R +HNP +HT , (1)

where Hχ =
∑

kσ∈χ εkc
†
kσckσ is the free electron like electronic structure for the electrode χ = L,R. Here, an electron

with energy is created (annihilated) in the state |kσ〉 at the energy εk and spin σ =↑, ↓ by c†kσ (ckσ). Further,

the Hamiltonian HNP =
∑
mσ εmd

†
mσdmσ +

∑
m Umnm↑nm↓ denotes the electrons in the nano particles (NPs), where

electrons are created (annihilated) in the state |mσ〉 with energy εm by d†mσ (dmσ). The coupling between the metallic
components via the molecules are described by the tunneling contribution HT . This Hamiltonian contains both the
elastic and inelastic contributions to the tunneling, where we have introduced

H(χ)
el =

∑
kmσ

vkmc
†
kσdmσ +H.c., (2)

H(NP)
el =

∑
mm′σ

vmm′d†mσdm′σ +H.c., (3)

H(χ)
inel =

∑
kmσl

vkmλl(bl + b†l )c
†
kσdmσ +H.c., (4)

H(NP)
inel =

∑
mm′σl

vmm′λl(bl + b†l )d
†
mσdm′σ +H.c., (5)

where the first two terms describe the elastic tunneling between an electrode and a NP, and between two NPs,
respectively, whereas the last two terms describe the corresponding vibration assisted tunneling.

Using standard (non-equilibrium) methods we write the elastic tunneling current through an arbitrary molecule as

Iel =2e
∑
ijσ

|vij |2
∫
G>iσ(ω)G<jσ(ω′)−G<iσ(ω)G>jσ(ω′)

ω − ω′ + eV + iδ

dω

2π

dω′

2π
, (6)

where the indices i (j) denotes the metallic contact to the left (right) of the molecule. The contact may either

an electrode (H(χ)) or an NP (H(NP)). The lesser (greater) Green function (GF) G
<(>)
iσ (ω) describe the electronic

structure in contact i, and V denotes the bias voltage across the junction. We can assume stationary conditions since
there are no time-dependent external fields acting on the system.

The GF for the electrons in the electrodes can be written g
</>
pσ (ω) = (±i)2πf(±ω)δ(ω − εp), where f(x) is the

Fermi distribution function. For the NPs we have to consider the charging energy Um. For simplicity though, we
calculate the NP GF in the atomic limit. This will give an inclusion of the charging, or activation, energy present
in the NP. The atomic limit is a reasonable approximation considering that the NPs are well separated from one
another and from the electrodes, and since the molecules between in the system merely act as potential barriers, let
be vibrating, between the metallic parts. Under those assumptions we can write the GF for the NP

G</>mσ (ω) =(±i)2πf(±ω)[〈1− nmσ̄〉δ(ω − εm) + 〈nmσ̄〉δ(ω − εm − Um)], (7)

where the occupation number 〈nmσ〉 is calculated through the equation

〈nmσ〉 =(−i)
∫
G<mσ(ω)

dω

2π
= f(εm)− 〈nmσ̄〉[f(εm)− f(εm + Um)], (8)

leading to

〈nm〉 =
f(εm)

1 + f(εm)− f(εm + Um)
. (9)

under the spin-degenerate conditions (giving 〈nmσ〉 = 〈nm〉).Expressing the NPs in terms of the GF Gm reflects
that the Coulomb repulsion in the NPs is not completely screened out, thus, the electrons are not completely free.
Calculating the state occupations according to the formula in Eq. (9) is a result of correlated states in the NPs.
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Using the GFs for the electrodes and the NPs, we can write the elastic current between an electrode and NP as

Iχ1
el (V ) =2eΓχ

∫ (
f(ω)− f(ω + eV )

)(
1− 〈n1(ω + eV )〉+ 〈n1(ω − U1 + eV )〉

)
dω, (10)

where Γχ = 2π|v|2ρχρNP defines the coupling between the electrode and the NP in terms of the densities of electron
states ρχ and ρNP and the tunneling rate v. The expression is obtained under the assumption that the density of
electron states in the NP is continuous and slowly varying with energy.

By the same token we write the elastic current between two NPs according to

I12
el (V ) =2eΓ

∫ {(
f(ω)− f(ω + eV )

)
〈1− n1(ω)〉

(
〈1− n2(ω + eV )〉+ 〈n2(ω − U2 + eV )〉

)
+
(
f(ω + U1)− f(ω + U1 + eV )

)
〈n1(ω + U1)〉

(
〈1− n2(ω + U1 + eV )〉+ 〈n2(ω + U1 − U2 + eV 〉

)
dω (11)

From this expression we observe similar features as we did above, however, here the assumption of correlated states
in the NPs make an impact on the electrons both tunneling out from an NP as well as into an NP.

The vibration assisted tunneling can be expressed in quite a similar fashion, that is, we have

Iinel =− 2eRe
∑
ijlσ

λ2
l |vij |2

∫
G<iσ(ω)G>jσ(ω′)D>l (ω′′)−G>iσ(ω)G<jσ(ω′)D<l (ω′′)

ω − ω′ − ω′′ + eV + iδ

dω

2π

dω′

2π

dω′′

2π
. (12)

Here, the GF for the vibrations, D</>l is given by

D</>l (ω) =(−i)2π[nB(ωl)δ(ω ∓ ωl) + {1 + nB(ωl)}δ(ω ± ωl)], (13)

where nB(x) is the Bose distribution function. The currents of interest are, thus, given by

Iχ1
inel(V ) =2eΓχ

∑
l,s=±1

λ2
l

∫ {
nB(ωl)

(
f(ω)− f(ω − sωl + eV )

)(
〈1− n1(ω − sωl + eV )〉+ 〈n1(ω − U1 − sωl + eV )〉

)
+ sf(sω)f(−s[ω + eV ] + ωl)

(
〈1− n1(ω − sωl + eV )〉+ 〈n1(ω − U1 − sωl + eV )〉

)}
dω,

(14a)

I12
inel(V ) =2eΓ

∑
l,s±1

λ2
l

∫ {
nB(ωl)

(
f(ω)− f(ω − ωl + eV )

)
〈1− n1(ω)〉

×
(
〈1− n2(ω − sωl + eV )〉+ 〈n2(ω − U2 − sωl + eV )〉

)
+ nB(ωl)

(
f(ω + U1)− f(ω + U1 − sωl + eV )

)
〈n1(ω + U1)〉

×
(
〈1− n2(ω + U1 − sωl + eV )〉+ 〈n2(ω + U1 − U2 − sωl + eV )〉

)
+ sf(sω)f(−s[ω + eV ] + ωl)〈1− n1(ω)〉

×
(
〈1− n2(ω − sωl + eV )〉+ 〈n2(ω − U2 − sωl + eV )〉

)
+ sf(s[ω + U1])f(−s[ω + eV ]− U1 + ωl)〈n1(ω)〉

×
(
〈1− n2(ω + U1 − sωl + eV )〉+ 〈n2(ω + U1 − U2 − sωl + eV )〉

)}
dω. (14b)

For the calculations we have assumed that the NPs have equal charging energies, i.e. Um = U , reflecting equivalent
NPs. We observe that there is an interplay between the inelastic modes and the charging energies, which will be
reflected in the transport curves.
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B. Current through a chain

Consider a chain of N molecules and N − 1 NPs and let the end molecules be connected to one electrode each, see
Fig. 3 (a) in the paper. Let the current through the chain be denoted by IN and let the current through each junction
be denoted by In. From classical circuit theory it is known that the current of resistances in series is connected to
the total current by

1

IN
=

1

N

∑
n

1

In
, (15)

from which we write the total current IN in terms of the currents In through each tunnel junction n as IN =
N(
∑
n 1/In)−1.

For chains in parallel, the currents through the individual channels can simply be added according to Itot =∑
N aNIN , where the coefficients aN describe the number of N -junctions chains. Those coefficients are determined

using least square fitting, i.e. minimizing the function Q =
∑
N (aNIN−Iexp)2, where Iexp is the experimental current.
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