Supporting Information

Ratiometric Fluorescent Nanosensor Based on Water Soluble Carbon Nanodots with Multiple Sensing Capacities

Songnan Qu, Hong Chen, Xuanming Zheng, Junsheng Cao, and Xingyuan Liu*

State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

Experimental details

Materials: AgNO₃, CaCl₂, BaCl₂, CdCl₂, CuSO₄, Fe(NO₃)₃, MgSO₄, NiCl₂, Pb(NO₃)₂, NaCl, NaOH, Al(NO₃)₃, Zn(NO₃)₂, ethanol and hydrochloric acid were purchased from Beijing Chemical Corp. All chemicals were used as received without further purification. The water used in all experiments was purified through a Millipore system.

Detection of metal ions: calculated amounts of metal \Box ons were added to the C-dot aqueous solution (0.02 mg mL⁻¹). The PL spectra were recorded after reaction for 10 min at 25°C.

Characterizations: Fluorescence excitation and emission spectra were collected using a FLS920 spectrometer. Fluorescence lifetimes were measured using an FLS920 time-correlated single photon counting (TCSPC) system.

Figure S1. Plots of intensity of blue fluorescence band (\circ) and green fluorescence band (\Box) and values of I_b/I_g (\bullet) versus irradiation time under 380 nm excitation at room temperature (light source: 450W Xe lamp, excitation slit: 1 nm).

Figure S2. PL spectra of the C-dot dilute aqueous solution (0.1 mg mL^{-1}) at different temperatures in the 10 to 82°C range under excitation at 380 nm.

Figure S3. PL spectra of the C-dot aqueous solutions (0.1 mg mL⁻¹) at various pH values under 380 nm excitation at 25° C.

Figure S4. PL spectra of C-dot aqueous solutions (0.1 mg mL⁻¹) with pH values from 13 to 2 by adding hydrochloric acid under 380 nm excitation at 25° C.

Figure S5. PL spectra of the C-dot aqueous solutions (0.02 mg mL⁻¹) in the presence of Fe³⁺ in concentrations from 0.01 to 46 μ M under 380 nm excitation at 25°C.

Figure S6. Time-dependent PL spectra of a C-dot-Fe³⁺ solution under 380 nm excitation at 25°C.

Figure S7. PL spectra of the C-dot aqueous solutions (0.02 mg mL^{-1}) in the presence of different Cu²⁺ concentrations (normalized at the maximum peak of the green fluorescence band, 380 nm excitation at 25°C).

Figure S8. (a) PL spectra and (b) normalized PL spectra (normalized at the maximum peak of the green fluorescence band) of the C-dot dispersion (0.04 mg mL⁻¹) in the presence of different Fe³⁺ concentrations in lake water under 380 nm excitation at room temperature. (c) The dependence of I_b/I_g on the concentrations of Fe³⁺ ions within the range of 0-80 μ M in lake water under 380 nm excitation at room temperature.