Supporting Information

Metal Nanoparticle Fluids with Magnetically-Induced Electrical

Switching Properties

Younghoon Kim, and Jinhan Cho^{*}

Figure S1. Thermogravimetric analysis (TGA) of MIL-SH-Au_{NP} fluids with the loading amount of 72 wt% Au_{NP}.

Figure S2. Elastic and viscous moduli as a function of temperature for MIL-SH. The Inset demonstrates the fluidic behavior of MIL-SH.

Figure S3. (a) Magnetization data of MIL-SH as a function of the external magnetic field measured at 300 K. (b) The reciprocal molar susceptibility curve of MIL-SH obtained to confirm the paramagnetic property.

Figure S4. (a) Temperature-dependent ionic conductivity of MIL-SH measured at a fixed frequency of 1 Hz. Frequency-dependent ionic conductivity of MIL-SH at temperatures (b) below and (c) above T_g .

Figure S5. Cyclic voltammograms (CV) of a bare ITO and (MIL-SH-Au_{NP}/PSS)₅ multilayer-coated ITO electrode in pH 3.0 PBS solution as a function of concentration of NaNO₂. The measured scan rate is 50 mV s⁻¹. The electrochemical activities of multilayers adsorbed onto ITO electrodes were investigated by cyclic voltammetry (CV) (model: compactstat, IVIUM). NO sensing was performed using NaNO₂ stock solutions. NaNO₂ can generate free NO according to the following reaction, $3HONO \rightarrow H++NO_3^-+2NO+H_2O$.