
Enhanced lithium storage in Fe_2O_3 -SnO₂-C nanocomposite anode with a breathable structure

Md Mokhlesur Rahman*, Alexey M. Glushenkov, Thrinathreddy Ramireddy, Tao Tao, Ying Chen*

Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia

E-mail: m.rahman@deakin.edu.au; ian.chen@deakin.edu.au

Fig. S1.

Fig. S1 Electrochemical impedance spectra for the fresh cells of the Fe_2O_3 -SnO₂ and Fe_2O_3 -SnO₂-C electrodes and the corresponding equivalent circuit (inset) model.

The Nyquist plots are semicircular in the high to medium frequency range, which reflects the charge-transfer resistance (R_{ct}) of both electrodes. The value of the intercept indicates the total electrical resistance of the electrolyte (R_s). The inclined line represents the

Warburg impedance (Z_w) at low frequency, which is associated with lithium-ion diffusion into the Fe₂O₃-SnO₂ particles. The corresponding equivalent circuit for the Nyquist plots of the Fe₂O₃-SnO₂ and Fe₂O₃-SnO₂-C electrodes is shown in the inset in Fig. S1, where C_{DL} represents the double layer capacitance. The values of R_{ct} for the Fe₂O₃-SnO₂ and Fe₂O₃-SnO₂-C electrodes were calculated to be approximately1457 Ω and 220 Ω , respectively. This indicates that Fe₂O₃-SnO₂ particles mixing with Super P LiTM carbon black provides much easier charge transfer at the electrode/electrolyte interface, and consequently decreases the overall battery internal resistance, enabling higher reactivity and lower polarization. ^{24, 41} The presence of this carbon black in Fe₂O₃-SnO₂ improves the battery performance significantly.

References

- 24. M.M. Rahman, J.Z. Wang, M.F. Hassan, S. Chou, Z.X. Chen and H.K. Liu, *Energy Environ. Sci.*, 2011, **4**, 952.
- 41. M.F. Hassan, M.M. Rahman, Z. Guo, Z. Chen and H.K. Liu, *J. Mater. Chem.*, 2010, 20, 9707.