Electronic Supplementary Information

Optical modulation of ZnO microwire optical resonators with parallelogram cross section

Yang Liu,^{*a*} Hongxing Dong,^{**a*} Shulin Sun,^{*b*} Wenhui Liu,^{*c*} Jinxin Zhan,^{*a*} Zhanghai Chen,^{*c*} Jun Wang^{*a*} and Long Zhang^{**a*}

^a Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai, 201800, China.

^b National Center for Theoretical Sciences at Taipei (Physics Division) and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.

^c State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200083, China.

*Author to whom correspondence should be addressed.

Tel: +86-021-69918318. Fax: +86-021-69918932. E-mail: hongxingd@siom.ac.cn (Doc.

Hongxing Dong)

Tel: +86-021-69918196. Fax: +86-021-69918932. E-mail: lzhang@siom.ac.cn (Prof. Long Zhang)

Figure S1. (a) SEM image of ZnO nanowire with hexagonal cross section obtained using source material without Sb_2O_3 . (b) XPS spectrum of several ZnO microwires with parallelogram cross section dispersed on Si wafer. A small Sb $3d^{3/2}$ peak can be found. The calculated mole ratio Sb:ZnO was about 0.27%, which was difficult for EDS to determine. (c) Raman backscattering spectra of single ZnO:Sb and pure ZnO dispersed on Si wafer, Silicon background Raman spectrum was also detected. An additional Sb related peak at about 717 cm⁻¹ was found. The similar results also obtained in other Sb doped ZnO products.¹ The results indicate that small amount Sb elements have been introduced into the ZnO products.

Reference

1. Y. Yang, J. J. Qi, Q. L. Liao, Y. Zhang, L. D. Tang, Z. Qin, J. Phys. Chem. C 2008, 112, 17916.