Electrically conductive magnetic nanowires using an electrochemical DNA-templating route.

Scott M. D. Watson,^a Hasan Daw A. Mohamed,^{a,b} Benjamin R. Horrocks,^a Andrew Houlton*^a

^aChemical Nanoscience Laboratory, School of Chemistry, Newcastle University,

Newcastle-Upon-Tyne, NE1 7RU (UK)

^bChemistry Department, Faculty of Arts and Science, Azzaytuna University,

P.O. Box 39011/39010, Tarhuna, Libya

Supporting Information

FT-IR spectroscopy

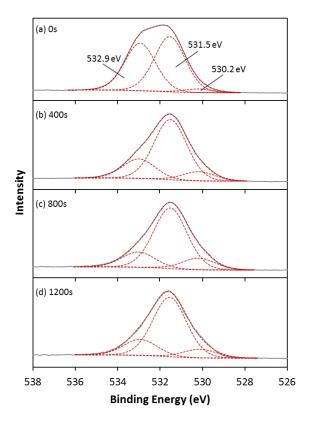
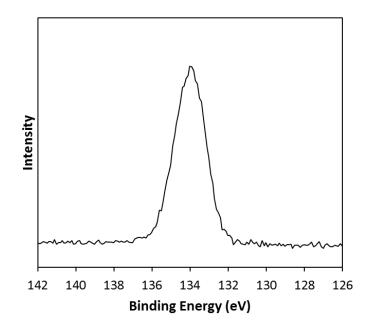
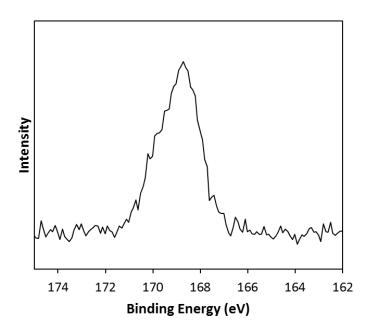

Wavenumber (cm ⁻¹)		
CT-DNA	CT-DNA / Fe ²⁺	Assignment ^a
961	973	C-C deoxyribose stretch
1021 ^b	-	C-O deoxyribose stretch
1071	1066	P-O/C-O deoxyribose stretch
1097	1103	PO_2^- symmetric stretch
1244	1205	PO_2^- asymmetric stretch
1364	1368	C-N stretch of cytosine / guanine
1417	1419	C-H / N-H deformation; C-N stretch
1487	1487	Ring vibration of cytosine / guanine
1530	1531	In-plane vibration of guanine / cytosine
1605	1602 ^b	In-plane vibration of adenine
1652	1654	C=O stretch of cytosine / thymine (?); In-plane vibration of thymine
1688	1681	C=O stretch of guanine / thymine; N-H thymine
2850–3500	2850–3500	C-H / N-H / O-H stretches

Table S1. Assignment and comparison of FTIR spectra $(400-4000 \text{ cm}^{-1})$ of calf thymus DNA, and calf thymus DNA following association of with Fe²⁺ cations in aqueous solution.

^a Assignments of DNA vibration bands reference to [1–4].

^bPeak appeared as a shoulder.


X-ray photoelectron spectroscopy


Figure S1. Curve-fitting of high resolution XP spectra of the O1s region from DNA-templated Fe nanowires, prepared via electrochemical reduction of Fe^{2+} in the presence of DNA. The spectra were acquired following etching of the nanowires by Ar^+ sputtering for a period of (a) 0s, (b) 400s, (c) 800s, and (d) 1200s.

From XPS depth profile studies of the DNA-templated Fe material, analysis of the Fe2p spectra determined the electrodeposited Fe to possess a core-shell structure comprised of a metallic Fe nucleus encased by a surface oxide layer, deduced to be oxide (*e.g.* Fe_2O_3 , Fe_3O_4) or oxyhydroxide (FeOOH) (see main manuscript for details). This was supported by curve-fitting of the O1s spectra.

As numerous different oxygen types are present in the product material (*e.g.* oxygen present in iron oxide/hydroxide, DNA, FeSO₄), making accurate fitting of the O1s spectra non-trivial, a simplified approach has been taken here. A minimum of three components are required in order to accurately reproduce the shape of the O1s spectra, where each component is the sum of several contributions, see Figure S1. The component at highest binding energy (532.9eV) is attributed to oxygen atoms in the DNA phosphate groups^{5, 6} (Note: the presence of a P2p signal around 134.1eV (see Figure S2) is consistent with this). Other contributions to this component of the O1s envelope are expected from the sulfate groups of unreacted FeSO₄ starting material present in the sample^{7, 8} (the presence of the sulfate groups is also indicated from the S2p signal observed around 168.7 eV, see Figure S3), as well as H₂O adsorbed at the surface of the Fe structures.^{9, 10} The second component in the O1s envelope (531.5eV), of similar intensity to the first, can be assigned to oxygen atoms present in the sugar and nucleobase units of the DNA.^{5, 6} A contribution from the underlying SiO₂ substrate to the spectrum within the region of these first two components may also be present, though this is not expected to be significant due to the considerable amount of sample material present on top of the substrate (this is supported by the XPS survey scan which showed only a weak Si2p signal). The final component fitted within the O1s envelope (530.2eV) is in reasonable agreement with the expected binding energy for O^{2-} species found in iron oxides.^{7,9,10} This is consistent with the Fe nanostructures possessing an oxide layer at their surface.

Figure S2. High resolution XP spectra of P2p region acquired from a sample of DNA-templated Fe nanowires.

Figure S3. High resolution XP spectra of S2p region acquired from a sample of DNA-templated Fe nanowires.

References

[1] S. Alex and P. Dupuis, Inorganica Chimica Acta, 1989, 157, 271-281.

[2] A.A. Ouameur and H.-A. Tajmir-Riahi, J. Biol. Chem., 2004, 279, 42041-42054.

[3] H. Arakawat, R. Ahmad, M. Naoui and H.-A. Tajmir-Riahi, J. Biol. Chem., 2000, 275, 10150-10153.

[4] G.I. Dovbeshko, N.Y. Gridina, E.B. Kruglova and O.P. Pashchuk, Talanta, 2000, 53, 233-246.

[5] C.-Y. Lee, P. Gong, G.M. Harbers, D.W. Grainger, D.G. Castner, and L.J. Gamble, *Anal. Chem.*, 2006, **78**, 3316-3325.

[6] M.R. Vilar, A.M. Botelho do Rego, A.M. Ferraria, Y. Jugnet, C. Noguès, D. Peled, and R. Naaman, *J. Phys. Chem. B*, 2008, **112**, 6957-6964.

[7] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, and N.S. McIntyre, Surf. Interface Anal., 2004, 36, 1564-1574.

[8] B.J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, and K. Siegbahn, *Phys. Scripta*, **1970**, 1, 286-298.

[9] X.-Q. Li, and W.-X. Zhang, J. Phys. Chem. C, 2007, 111, 6939-6946.

[10] X.-Q. Li, and W.-X. Zhang, *Langmuir*, 2006, 22, 4638-4642.