Supporting information

Nonenzymatic Oxalic Acid Sensor Using Platinum Nanoparticles Modified on Graphene Nanosheets

Xiao-mei Chen^{a,c,*}, Zhi-xiong Cai^d, Zhi-yong Huang^a, Munetaka Oyama^c, Yaqi Jiang^b, Xi Chen^{b,*},

^aCollege of Biological Engineering, Jimei University, Xiamen, 361021, China ^bDepartment of Chemistry, College of Chemistry and Chemical Engineering, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China ^cDepartment of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan ^dMinistry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, 350002, China

Email: <u>xichen@xmu.edu.cn</u>

Tel: (86)-592-2184530, Fax: (86)-592-2184530.

^{*} Corresponding author. Tel: +86 592 2184530; Fax: +86 592 2184530;

E-mail address: xichen@xmu.edu.cn

Supplementary Results

Table S1 Summary of oxidation potential peak (E_p), current peak (I_p), electrochemical active surface areas (ECSAs) and current density (*j*) of OA on different electrodes.

Table S2 Comparison of different OA sensors in terms of LOD and linear range.

Table S3 Recovery data for spinach samples added with different OA concentrations.

Electronic Supplementary Material (ESI) for Nanoscale This journal is C The Royal Society of Chemistry 2013

Electrodes	E _p (V vs SCE)	I _p (mA)	ECSAs (cm ²)	<i>j</i> (mA cm ⁻²)	
GNs	1.45	0.73			
PtNFs	0.85	0.82	0.21	3.91	
PtNPGNs	1.05	1.17	0.18	6.50	
PtC	1.03	0.48	0.17	2.82	

Table S1 Summary of oxidation potential peak (E_p), current peak (I_p), electrochemical active surface areas (ECSAs) and current density (*j*) of OA on different electrodes.

OA sensor	LOD ^a (µM)	Linear range (mM)	References
Rh(Pc)/C ^b	1.0	~0.3	[1]
SiO ₂ /C/CoPc ^c	0.58	0.0398~ 0.046	[2]
MWNTs	12	0.05~ 150	[3]
PdNPs/PAMAM/MWNTs ^d	20	0.03~5.0	[4]
PdNPs/CNF ^e	200	0.2~13; 13~45	[5]
EG-PS ^r	50	0.5~3	[6]
PtNPGNs	10	0.1-15; 15-50	This work

Table S2 Compar	rison of different (OA sensors in terms	of LOD and linear range.
-----------------	----------------------	---------------------	--------------------------

^aLOD: the limit of detection;

^bRh(Pc)/C: Rhodium phthalocyanin/C;

^cSiO₂/C/CoPc: SiO₂/C/cobalt phthalocyanine;

^dPdNPs/PAMAM/MWNTs: Palladium nanoparticles/polyamidoamine/MWNTs;

^ePdNPs/CNF: Palladium nanoparticle/carbon nanofiber;

^fEG-PS: Exfoliated graphite-polystyrene.

Reference

1 S. Yamazaki, N. Fujiwara, K. Yasuda, *Electrochim. Acta* 2010, 55, 753.

- 2 A. Rahim, S.B.A. Barros, L.T. Arenas, Y. Gushikem, *Electrochim. Acta* 2010, 53, 755.
 2 A. Rahim, S.B.A. Barros, L.T. Arenas, Y. Gushikem, *Electrochim. Acta* 2011, 56, 1256.
 3 Y.Q. Zheng, C.Z. Yang, W.H. Pu, J.D. Zhang, *Food Chem.* 2009, 114, 1523.
 4 H. Ahmar, A.R. Fakhari, M.R. Nabid, S.J.T. Rezaei, Y. Bide, *Sens. Actuators, B* 2012, 171-172, 611.
 5 Y. Liu, J. Huang, D. Wang, H. Hou, T. You, *Anal. Methods* 2010, 2, 855.
- 6 F. Manea, C. Radovan, I. Corb, A. Pop, G. Burtica, P. Malchev, S. Picken, J. Schoonman, Sensors 2007, 7, 615.

Sample	No.	Amount	Added	Found	Recovery	R.S.D. ^d
		(mM)	(mM)	(mM)	(%)	(%)
1 ^a	1	2.32	1.00	3.35	103.0	5.31
	2	2.27	2.00	4.25	99.0	4.57
	3	2.41	4.00	6.48	101.8	3.14
2 ^b	1	2.05	1.00	3.10	105.0	4.89
	2	1.89	2.00	3.94	102.5	3.90
	3	1.93	4.00	6.02	102.3	3.57
3°	1	2.48	1.00	3.44	96.0	5.04
	2	2.61	2.00	4.68	103.5	4.69
	3	2.57	4.00	6.50	98.2	2.04

Table S3 Recovery data for spinach samples added with different OA concentrations.

^{a, b, c} the spinach samples from the stem-leaf mixture, leaf and stem, respectively. ^d R.S.D. were calculated from five separate experiments.