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Fig. SI. TEM gallery of silica NTs obtained from our nine different experimental

conditions (three temperatures of 30, 60, and 90 °C, and three pore diameter by pore

widening for 0, 15, 30 min). Sinusoidal, undulated morphologies were developed below

~30 nm in diameter for all the reaction temperatures.
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Fig. S2.  Geometry for calculating the nonlinear evolution of 6, , ina cylindrical pore.
The red lines indicate the pore surfaces, and o, +, denotes the thickness of silica wall.

L is the unit length of pore, and &, , can be expressed the sum of 55, +6, .

Estimating the thickness of water condensates.
The volume of silica tubes is assumed to be originated by consuming all the amount of H,O

with the number of Si atoms, which was deduced fromd,, , . We start our estimation as
follows:
0.39-(7(R,)?-L—-2(R, =85, 9 -L}=2(R, =8, , 9L~ 7{(R,)* ~ s , 5+ 6,)° - L
(R =(Buo, +6,)2}= (R, —84i6.)> —0.39-{(R,)* ~ (R, — 5410, )*}

Therefore, we obtain eq. (4):

5"'20 - Rp _\/(RP _55i02)2 —0.39- {(Rp)2 _(Rp _5Si02)2}

Derivation of a modified Kelvin equation considering dispersion forces for cylindrical

meso- and macropores.
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Condensation/evaporation of water in the walls of cylindrical macropores can be described by

the well known Kelvin Equation:

Inﬂz—%cose (1)

P, rRT

with p and py the vapor pressures of the curved and planar interface, respectively, y the

surface tension of the gas-liquid interface, Vi the molar volume of the liquid phase, r the

radius of the cylindrical pore and © the contact angle.

However, this equation does not take into account the influence of the dispersion
forces on the interface, which may be significant in mesoporous, specially the long range

forces.

To introduce this effect on the equation, we have used the work developed by K.
Stephan [S1] for planar surfaces and modify it for the case of cylindrical pores. The

procedure is described next.

Figure S3. Cross-section scheme of the water condensation layer in a cylindrical pore
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When a cylindrical pore of radius R, is exposed to a water vapor (Figure 5),

condensation may happen to form a water layer of thickness & and curvature K (2) on the
wall of the pore. The G-L interface © has a thickness Ar which, under the assumption of a

Gibbs interface, would equal 0. However, a water layer condensed in a mesopore wall, both &

and Ar are in the same range and this model fails.

Ko 1 (2)

In mesopores, the main driving forces for the water condensation are the capillarity
forces at the © interface and the dispersion forces exerted by the solid wall on the system.
While capillarity forces rise from the uncompensated forces experienced by the molecules at
the G-L interface, the dispersion forces originate from quantum mechanical phenomena and

work as body forces.

The dispersion forces between the solid wall and the liquid phase can be attractive or
repulsive. They are long range forces (from 0.2 up to 10 nm), being weaker with distance.
Because the pore diameters used in this work are larger than 40 nm in diameter, the centre of
the pore can be assumed to be almost free of dispersion forces. In general R, >> §, so that the
dispersion forces close to the pore wall are approximately equivalent to that of a system
consisting of two parallel semi-infinite planar surfaces. The potential energy per unit area of

the dispersion forces in this case is given by eq. (3).

A

U == 3
" 127(R, - 1)° ©)
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where A is known as the Hamaker constant and depends on the interacting media. It is
negative for attractive forces. The equation has already been rewritten in cylindrical
coordinates, withr =[0,R[. The dispersion forces can then be derived from the potential
energy as follows.

_aUdisp _ A

fo— _
disp or 67(R, -r)°

4)

where fy;sp s the resultant of all dispersion forces acting in a unit area in the medium. These
forces are compensated by an external pressure so that equilibrium condition is satisfied.

Therefore, the so-called dispersion pressure (paisp) 1s defined as:

A

Paisp =~ Faisp = 67(R._1° )
P

Next, consider the liquid volume element shown in Figure 6 under the influence of the
dispersion forces and the dispersion pressure. The balance of the momentums acting on this

volume element can be written as:

P * _ 8pdisp
L "dispr
or

(6)

* _ fdisp,r
disp,r —

with pp the liquid density and f

the dispersion forces acting on the volume

element in the direction of r per unit mass.
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Figure S4. Volume element defined inside a pore in the liquid media

By rearranging, it is then obtained the relation

f* _ 1 apdisp
dispr — AL
pL or
apdis
fdisp,r :VL 7‘3
_ — OD..
F disp,r :V L M
or
_ — 0D..
Fdisp,rdr =V Mdr
or
Edisp,rdr :\7Ldpdisp (7)

On the other hand, under the next assumptions, one can derive the Young-Laplace equation

for the cylindrical pore including both the capillary forces and the dispersion forces.

- The gas phase behaves as an ideal gas, so that no interactions between the gas molecules are

considered.

- The thickness of the liquid layer 6 is relatively thin compared to R, and it is always in

equilibrium with the gas phase.
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- The Gibbs assumption cannot be accepted as the liquid layer is quite thin and thus, the

thickness of the interface is negligible compared to o.

The balance of all forces acting on a shell element at the interface © (Figure 7) with

arc length ds = rde, depth L and thickness Ar can be written as:

dF,_ +dF, =dF; + dFdisp (8)

Figure S5. Illustration of a shell element on the interface © with thickness Ar

The force caused by the surface tension reads as dF, = yLd@& , with y the surface tension.
The force caused by the liquid pressure reads as dF, = p, - (r+Ar)-L-d&@

The force caused by gas pressure reads as dF; = p;-r-L-dé

And the dispersion forces read as:

AFip = Paispo.L (r+Ar)-L-do- Paispoc T L-do~ (pdisp,e,l_ - pdisp,e,e) -r-L-do

disp —
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Thus, the balance of forces is:
p-(r+Ar)-L-do+y-L-d0=pg-r-L-d0+(PyspoL — Paispec) - L-dO

After arrangement of the equation, the Young-Laplace equation is obtained:

P +% = Pg + ( Paispo.L — pdisp,e,e) )

To end up in the modified Kelvin equation, the thermodynamic condition of

equilibrium must be addressed.

The Gibbs-Duhem equation for a system without dispersion forces reads as follow:
dG =-SdT +Vdp, S(p.T), p(p.T)

In a system with dispersion forces, because of the dependence of Fgis, with distance, the

pressure will also depend on the position in the liquid.

p(p,T.T)

and as a consequence

H(p,T.F)

The Gibbs function considering all energetic contributions is now:

dG(S,V,F,n) =TdS — pdV — Fy, dF + zn (10)

with T, p, Fgisp and p functions of S, V, r and n

Because Gibbs equation is a homogeneous function of first order in the variables S, V,

n, its Euler equation reads as:
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G=TS—-pV+mn — dG=TdS+SdT — pdV +Vdp + rdn+ndu (11)
Subtracting (10) from (11)

SdT —Vdp +F 4;,,dF +ndu =0 (12)

Since Fgisp depends only on r (Fgisp act in the direction of vector r), the dot product results in:

F 4o, 07 =F

disp

dr cos(0) =F ,;, dr (13)

disp
Now, introducing (13) first and next (7) in (12)
SdT —Vdp +Vdpy, +ndee =0

By arranging all the elements and dividing by the amount of substance n and
introducing molar entropy and molar volume, the Gibbs-Duhem equation including the

dispersion forces is obtained.
du =-SdT +Vdp-Vdp,,, (14)
which defines the chemical potential of the system as a function of T, p and puisp.

Consider now an arc element r,do in the water thin film with thickness & in

equilibrium with its vapor and the © interface (Figure 8). The temperature is the same along

the whole interface and at both sides of it. The pressure at the gas side is pg,e and at the liquid

side pLo.

The phase equilibrium requires p (T , p; ., T = +Ar) = Bg(T, PG T=T,)
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A reference system without dispersion forces can be defined far away from the pore

surface (r, = 0), with the equilibrium condition in this case given by p, (T ro 20) =

o’ Psar

HG(Tea psat’ re %O)
Since dg =dyg,

J-r:r,,+Ar r=r,

He = | d

r—0

Figure S6. Illustration of an arc element on the interface ©.

Using (14) now

J.r:rﬁAr - S_dT +V_dp _V_Ldpdisp = J‘rr:@_ §G dT +V_dp _\dedisi’

r—0

_J S.dT + ["Vidp— [V, dpy, = j SadT + ["*Vgdp = [**"* Vg dpy,

Psat Psat

Assuming that liquid and gas are incompressible

V_L( Py — Psar) _V_Lpdisp,e,l_ =V—G( Psc — Psat) _V_Gpdisp,e,e
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VL pe,L _VL Psat _VL pdisp,e,L :VG pa,G _VG Psat _VG pdisp,H,G (15)

At the interface, the Young-Laplace equation reads as

Py + RL_5 = Poc T Paispo,. ~ Puispoc (16)
p

The substitution of po 1. from (16) in (15) and arrangement of all elements results in

V7
(VL _VG) Rp -6

pH,G = psat +

+ pdisp,@,G

Finally, replacement of the molar volumes of gas and liquid by their densities results

in the modified Kelvin equation for a cylindrical pore for the gas:

P 4
pQ,G psat pL _ pG Rp _ 5 pdlSp,H,G
Adis .0,
where Pyspoc = —67Z'(R p0_G5)3
p

Here we assume that 6 »» Ar and it is neglected in the Young-Laplace equation applied

to the interface, since 0 is around a few tenths of nm and Ar is in the range of 1 nm.

Equivalently, it can be obtained from (16) and (15) the modified Kelvin equation for

the liquid phase.
PL /4
p,:psa_ +pis,,
oL t e Rp _5 disp,d,L
Ajis ,0,L
and pdispeL = p_ 5)3
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Estimation of Hamaker Constants in our systems.

Estimated Hamaker Constants for a system consisting of two dissimilar materials in

the presence of a third media (water) using equation Asz z(m_@) (‘/E_‘/E)

with material 1 specified in the column, material 2 in the row and media 3 as water. Hamaker

values for the system material | air | material are taken from references S2 and S2, as below.
Air/Vac/Air= 0

Awater/air/Water = +3.7x107° J

Annoyairanos = +16.5x1070 1

Asioyairsios = +6.8%107° ]

Apc/aipe = +5.1%x1072° J

Table S1. A summary of estimated Hamaker constants.

Awz (107 ) Air SiO,
ALO; 4.1 +1.5
PC -0.6 +0.2
SiO, -1.3

Comparison of processing times.
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The processing times between the literature procedures and the present study are estimated

for brief comparison, assuming the fabrication of silica NTs possessing the similar

geometries each other. It is estimated by using experimental parameters when the literature

processes are applied for porous alumina templates with 40 nm in pore diameter and 10 pm in

pore length.

Other parameters such as evacuation time and chamber heating in the literature

papers, and saturation time for humidity in the present study are commonly ruled out for

simplicity.

reactor can also affect such a calculation.

Table S2. A summary of compared processing times.

It is noted that the types of precursor delivery such as shower head and flow

Precursors Temperature Growth rate | Total reaction time References
(°C) (nm/cycle) (h)
Catalytic ALD of | - SiCl, 25 0.21 25 52
SiO,
-H,0 [Kaus et al.,
Science 1997]
- pyridine
Self-catalytic -H,N(CH,);3Si(OEt); 150 0.06 10 48a
ALD of SiO,
-H,0 [Bachmann et al.,
Angew. Chem. Int.
- 03
Ed. 2008]
Transformation of | - SiCl, 30-90 7-11 0.25 The present work
water condensates
-H,0

[S1] K. Stephan, International Journal of Heat and Mass Transfer, 2002, 45, 4715-4725




Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013

[S2] R.H. French, Origins and Applications of London Dispersion Forces and Hamaker

Constants in Ceramics, J. Am. Ceram. Soc., 2000, §3, 2117-46

[S3] G.V. Franks, Colloids and Fine Particles (Chap. 5), in Introduction to Particle

Technology, 2nd. Edition, edited by Martin Rhodes, Wiley, 2008



