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Fig. S1.  TEM gallery of silica NTs obtained from our nine different experimental 

conditions (three temperatures of 30, 60, and 90 °C, and three pore diameter by pore 

widening for 0, 15, 30 min).  Sinusoidal, undulated morphologies were developed below 

~30 nm in diameter for all the reaction temperatures. 
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Fig. S2.  Geometry for calculating the nonlinear evolution of OH2
  in a cylindrical pore.  

The red lines indicate the pore surfaces, and nSiO  
2

  denotes the thickness of silica wall.  

L is the unit length of pore, and OH2
  can be expressed the sum of nSiO  

2
. 

 

Estimating the thickness of water condensates. 

The volume of silica tubes is assumed to be originated by consuming all the amount of H2O 

with the number of Si atoms, which was deduced from OH2
 .  We start our estimation as 

follows: 
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Therefore, we obtain eq. (4): 

 222 )()(39.0)(
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Derivation of a modified Kelvin equation considering dispersion forces for cylindrical 

meso- and macropores. 
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Condensation/evaporation of water in the walls of cylindrical macropores can be described by 

the well known Kelvin Equation: 
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with p and p0 the vapor pressures of the curved and planar interface, respectively, γ the 

surface tension of the gas-liquid interface, VL the molar volume of the liquid phase, r the 

radius of the cylindrical pore and ө the contact angle. 

However, this equation does not take into account the influence of the dispersion 

forces on the interface, which may be significant in mesoporous, specially the long range 

forces. 

To introduce this effect on the equation, we have used the work developed by K. 

Stephan [S1] for planar surfaces and modify it for the case of cylindrical pores. The 

procedure is described next.  

 

 

Figure S3.  Cross-section scheme of the water condensation layer in a cylindrical pore 
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When a cylindrical pore of radius Rp is exposed to a water vapor (Figure 5), 

condensation may happen to form a water layer of thickness  and curvature K (2) on the 

wall of the pore. The G-L interface ө has a thickness Δr which, under the assumption of a 

Gibbs interface, would equal 0. However, a water layer condensed in a mesopore wall, both  

and Δr are in the same range and this model fails. 
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In mesopores, the main driving forces for the water condensation are the capillarity 

forces at the ө interface and the dispersion forces exerted by the solid wall on the system.  

While capillarity forces rise from the uncompensated forces experienced by the molecules at 

the G-L interface, the dispersion forces originate from quantum mechanical phenomena and 

work as body forces. 

The dispersion forces between the solid wall and the liquid phase can be attractive or 

repulsive. They are long range forces (from 0.2 up to 10 nm), being weaker with distance. 

Because the pore diameters used in this work are larger than 40 nm in diameter, the centre of 

the pore can be assumed to be almost free of dispersion forces. In general Rp >> , so that the 

dispersion forces close to the pore wall are approximately equivalent to that of a system 

consisting of two parallel semi-infinite planar surfaces. The potential energy per unit area of 

the dispersion forces in this case is given by eq. (3). 
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where A is known as the Hamaker constant and depends on the interacting media. It is 

negative for attractive forces. The equation has already been rewritten in cylindrical 

coordinates, with  Rr ,0 . The dispersion forces can then be derived from the potential 

energy as follows. 

3)(6 rR

A

r

U
f

p

disp

disp









  (4)  

where fdisp is the resultant of all dispersion forces acting in a unit area in the medium. These 

forces are compensated by an external pressure so that equilibrium condition is satisfied. 

Therefore, the so-called dispersion pressure (pdisp) is defined as: 
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Next, consider the liquid volume element shown in Figure 6 under the influence of the 

dispersion forces and the dispersion pressure. The balance of the momentums acting on this 

volume element can be written as: 
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with L the liquid density and 
m

f
f

rdisp

rdisp

,*

,   the dispersion forces acting on the volume 

element in the direction of r per unit mass. 
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Figure S4. Volume element defined inside a pore in the liquid media 

 

By rearranging, it is then obtained the relation 
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dispLrdisp dpVdrF ,     (7) 

On the other hand, under the next assumptions, one can derive the Young-Laplace equation 

for the cylindrical pore including both the capillary forces and the dispersion forces. 

- The gas phase behaves as an ideal gas, so that no interactions between the gas molecules are 

considered. 

- The thickness of the liquid layer  is relatively thin compared to Rp and it is always in 

equilibrium with the gas phase. 
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- The Gibbs assumption cannot be accepted as the liquid layer is quite thin and thus, the 

thickness of the interface is negligible compared to . 

The balance of all forces acting on a shell element at the interface ө (Figure 7) with 

arc length ds = rdө, depth L and thickness Δr can be written as:  

dispGL dFdFdFdF      (8) 

 

 

Figure S5.  Illustration of a shell element on the interface ө with thickness Δr 

 

The force caused by the surface tension reads as  dLdF  , with γ the surface tension. 

The force caused by the liquid pressure reads as dLrrpdF LL  )(  

The force caused by gas pressure reads as dLrpdF GG   

And the dispersion forces read as:  
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Thus, the balance of forces is: 

  dLrppdLrpdLdLrrp GdispLdispGL  )()( ,,,,  

After arrangement of the equation, the Young-Laplace equation is obtained: 
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To end up in the modified Kelvin equation, the thermodynamic condition of 

equilibrium must be addressed. 

The Gibbs-Duhem equation for a system without dispersion forces reads as follow: 

),(),,(, TpTpSdpVdTSdG   

In a system with dispersion forces, because of the dependence of Fdisp with distance, the 

pressure will also depend on the position in the liquid. 

),,( rTp

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and as a consequence 

),,( rTpµ


 

The Gibbs function considering all energetic contributions is now: 

dnrdFpdVTdSnrVSdG disp 


),,,(    (10) 

with T, p, Fdisp and µ functions of S, V, r and n 

Because Gibbs equation is a homogeneous function of first order in the variables S, V, 

n, its Euler equation reads as: 
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 nddnVdppdVSdTTdSdGnpVTSG    (11) 

Subtracting (10) from (11) 

0 ndrdFVdpSdT disp


  (12) 

Since Fdisp depends only on r (Fdisp act in the direction of vector r), the dot product results in: 

drFdrFrdF dispdispdisp  )0cos(


  (13) 

Now, introducing (13) first and next (7) in (12) 

0 ndVdpVdpSdT disp
 

By arranging all the elements and dividing by the amount of substance n and 

introducing molar entropy and molar volume, the Gibbs-Duhem equation including the 

dispersion forces is obtained. 

dispdpVdpVdTSd     (14) 

which defines the chemical potential of the system as a function of T, p and pdisp. 

Consider now an arc element rөdө in the water thin film with thickness  in 

equilibrium with its vapor and the ө interface (Figure 8). The temperature is the same along 

the whole interface and at both sides of it. The pressure at the gas side is pG,Ө and at the liquid 

side pL,Ө. 

The phase equilibrium requires µ
L
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A reference system without dispersion forces can be defined far away from the pore 

surface (rө  0), with the equilibrium condition in this case given by µ
L
(T

ө
, p

sat
, rө 0) = 

µ
G
(T

ө
, p

sat
, rө 0). 
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Figure S6.  Illustration of an arc element on the interface ө. 

 

Using (14) now 
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Assuming that liquid and gas are incompressible 
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GdispGsatGGGLdispLsatLLL pVpVpVpVpVpV ,,,,,,      (15) 

At the interface, the Young-Laplace equation reads as 
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The substitution of pө,L from (16) in (15) and arrangement of all elements results in 
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Finally, replacement of the molar volumes of gas and liquid by their densities results 

in the modified Kelvin equation for a cylindrical pore for the gas: 
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Here we assume that  ›› Δr and it is neglected in the Young-Laplace equation applied 

to the interface, since  is around a few tenths of nm and Δr is in the range of 1 nm. 

Equivalently, it can be obtained from (16) and (15) the modified Kelvin equation for 

the liquid phase. 
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Estimation of Hamaker Constants in our systems. 

Estimated Hamaker Constants for a system consisting of two dissimilar materials in 

the presence of a third media (water) using equation
   33223311132 AAAAA 

 

with material 1 specified in the column, material 2 in the row and media 3 as water. Hamaker 

values for the system material air material are taken from references S2 and S2, as below. 

Air/Vac/Air ≈ 0 

AWater/Air/Water = +3.7×10
-20

 J 

AAl2O3/Air/Al2O3 = +16.5×10
-20

 J 

ASiO2/Air/SiO2 = +6.8×10
-20

 J 

APC/Air/PC = +5.1×10
-20

 J 

 

Table S1.  A summary of estimated Hamaker constants. 

A1W2  (10
-20

 J) Air SiO2 

Al2O3 -4.1 +1.5 

PC -0.6 +0.2 

SiO2 -1.3  

 

Comparison of processing times. 
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The processing times between the literature procedures and the present study are estimated 

for brief comparison, assuming the fabrication of silica NTs possessing the similar 

geometries each other. It is estimated by using experimental parameters when the literature 

processes are applied for porous alumina templates with 40 nm in pore diameter and 10 μm in 

pore length.  Other parameters such as evacuation time and chamber heating in the literature 

papers, and saturation time for humidity in the present study are commonly ruled out for 

simplicity.  It is noted that the types of precursor delivery such as shower head and flow 

reactor can also affect such a calculation. 

 

Table S2.  A summary of compared processing times. 

 Precursors Temperature 

(°C) 

Growth rate 

(nm/cycle) 

Total reaction time 

(h) 

References 

Catalytic ALD of 

SiO2 

- SiCl4 

- H2O 

- pyridine 

25 0.21 2.5 52 

[Kaus et al., 

Science 1997]  

Self-catalytic 

ALD of SiO2 

-H2N(CH2)3Si(OEt)3 

- H2O 

- O3 

150 0.06 10 48a 

[Bachmann et al., 

Angew. Chem. Int. 

Ed. 2008] 

Transformation of 

water condensates 

- SiCl4 

- H2O 

30-90 7-11 0.25 The present work 

 

[S1] K. Stephan, International Journal of Heat and Mass Transfer, 2002, 45, 4715-4725 
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[S2] R.H. French, Origins and Applications of London Dispersion Forces and Hamaker 

Constants in Ceramics, J. Am. Ceram. Soc., 2000, 83, 2117–46 

[S3] G.V. Franks, Colloids and Fine Particles (Chap. 5), in Introduction to Particle 

Technology, 2nd. Edition, edited by Martin Rhodes, Wiley, 2008 
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