## SUPPLEMENTARY MATERIAL TO Unimolecular amplifier: principles of a three-terminal device with power gain

Cormac Toher,<sup>†</sup> Daijiro Nozaki,<sup>†</sup> Gianaurelio Cuniberti,<sup>†,‡</sup> and Robert M. Metzger<sup>\$,†,‡</sup>

Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany,

and

Laboratory for Molecular Electronics, Chemistry Department University of Alabama, Tuscaloosa, AL 35487-0336, USA

E-mail: research@nano.tu-dresden.de; rmetzger@ua.edu

**Table A:**Molecular orbital energies (in eV) for molecules UA1 through UA4,<br/>from DFTB calculations (here P,H,T,B = significant wavefunction<br/>amplitude P: on pyrene donor, T: on TTF donor, B: on bridge, A: on<br/>acceptor), and experimental gas-phase ionization potentials (ID) for<br/>TTF and pyrene, and experimental electron affinities  $A_A$  for TCNQ,<br/>and benzoquinone. The empirical formulae are  $C_{43}H_{24}O_2N_2S_6$  for<br/>UA1,  $C_{43}H_{28}O_2N_2S_6$  for UA2,  $C_{41}H_{24}O_4S_6$  for UA3, and  $C_{41}H_{28}O_4S_6$ <br/>for UA4.

| Energies (eV)                        | UA1                   | UA2                   | <u>UA3</u>                | <u>UA4</u>              |
|--------------------------------------|-----------------------|-----------------------|---------------------------|-------------------------|
| HOMO-1                               | -4.854 <sup>T</sup>   | -4.850 <sup>T</sup>   | -5.525                    | -5.388 <sup>P,B,T</sup> |
| НОМО                                 | -4.523 <sup>A</sup>   | -4.688 <sup>A</sup>   | -5.129 <sup>A</sup>       | -4.973 <sup>B,T</sup>   |
| LUMO                                 | -3.423 <sup>P,A</sup> | -3.362 <sup>P,B</sup> | -3.963 <sup>T,B</sup>     | -4.250 <sup>A</sup>     |
| LUMO+1                               | -3.029 <sup>A</sup>   | -2.672 <sup>P,B</sup> | -3.288 <sup>P,B,T,A</sup> | -3.317 <sup>P,B,T</sup> |
| HOMO-LUMO                            | 1.100                 | 1.326                 | 1.166                     | 0.724                   |
| I <sub>D</sub> (T=TTF)               | 6.83 [22]             | 6.83 [22]             | 6.83 [22]                 | 6.83 [22]               |
| I <sub>D</sub> (P=pyrene)            | 7.41 [23]             | 7.41 [23]             | 7.41 [23]                 | 7.41 [23]               |
| $\tilde{A}_A$ (TCNQ or benzoquinone) | 3.3 [24]              | 3.3 [24]              | 1.9 [25]                  | 1.9 [25]                |
| $I_D(T) - A_A(A)$                    | 3.53                  | 3.53                  | 4.93                      | 4.93                    |
| $I_{D}(P) - A_{A}(A)$                | 4.11                  | 4.11                  | 5.51                      | <u>5.51</u>             |
|                                      |                       |                       |                           |                         |

The LUMO wavefunction amplitudes, were naively expected to be largest for the A part of the molecule, and were indeed so for UA1 and UA4, but not for UA2 or UA3. Similarly, it was expected that the largest HOMO and HOMO-1 wavefunction amplitudes would be largest on the donor atoms of T and P, respectively, but this is not seen in **Table A**. Linking these donors and acceptors covalently (in particular with an ethynyl bridge) made considerable changes in the intramolecular electron distribution, despite a saturated alkyl bond in the A part of the molecule: clearly a longer saturated bridge should have been assumed.

To show how the central voltage  $V_C$  affects the current for this case, the currents through each molecule-electrode junction,  $I_L$ ,  $I_C$ , and  $I_R$ , as well as the corresponding energy of each of the molecular levels on each part of the molecule, are plotted in **Figure A** for  $V_C = 1.0$  V. Increasing the central voltage  $V_C$  charges the central component of the molecule, and also exerts an electric field on it, causing the

molecular levels in this part of the molecule to increase in energy. Therefore, the HOMO of the central moiety enters into the bias window at a lower voltage, resulting in an earlier switching on of the current.



**Figure A**: (a) Currents through each molecule-electrode junction,  $I_L$ ,  $I_C$ , and  $I_R$ , for  $V_C = 1.0$  V for UA6, for the case where there is both elastic and inelastic transport through the molecule. (b) Energies of molecular levels  $\mathcal{E}_L HOMO$ ,  $\mathcal{E}_C HOMO$ ,  $\mathcal{E}_R HOMO$ ,  $\mathcal{E}_L LUMO$ ,  $\mathcal{E}_C LUMO$ , and  $\mathcal{E}_R LUMO$  for the same bias range. At zero  $V_{LR}$ , the chemical potential of the electrodes is at -5.0 eV, and  $V_{LR}$  is the bias between the left and right electrodes. The central voltage  $V_C$  charges the central part of the molecular levels in this part of the molecule to increase in energy. This causes the HOMO of the central moiety to enter into the bias window at a lower voltage, resulting in an earlier switching on of the current.

There are two components to the mechanism shifting the orbitals in the central moiety: the electric field due to the bias applied to the electrodes and the net

charge on the molecule itself. To demonstrate that this device is not simply a field-effect transistor, we switched off the effect of the electric field by setting  $U^{ee}_{ja} = 0.0$  eV. The results for the case of elastic-only transport are shown in **Figure B(a)**, and those for the case of both elastic and inelastic transport are shown in **Figure B(b)**. These results show that the device produces current amplification **even in the absence of electric field effects on the molecular orbitals**, demonstrating that it is not simply a field-effect transistor.





**Figure B**: Current  $I_L$  for UA6 for different values of  $V_C$  with  $U^{ee}{}_{ja}$ = 0.0 eV for (a) elastic-only transport (b) both inelastic and elastic transport. The voltage on the x-axis  $V_{LR}$  is the bias between the left and right electrodes. The device produces current amplification even in the absence of electric field effects on the molecular orbitals, demonstrating that it is not simply a field-effect transistor.

Again, the gradual displacement of the  $I_L$  currents with increasing control electrode voltage  $V_C$  seen in **Figure B(b)** is exactly what is needed to discuss molecule UA6 as a unimolecular amplifier; the separated  $I_L$  curves still merge at higher currents in **Figure B(b)**.

As in **Figure 8(a)**, the open two-sided vertical arrow in **Figure B(b)** shows two points ("amplifier operating points") which could be used to discuss power gain, one on the  $V_C = 0$  curve ( $V_{LR} = 3.0$  Volts,  $I_L = 3.63 \times 10^{-7}$  A) and the other at the  $V_C = 1.5$  Volt curve ( $V_{LR} = 3.0$  Volts,  $I_L = 6.72 \times 10^{-7}$  A). If a load resistor of  $1.0 \times 10^7$  $\Omega$  is placed between the L and R electrodes, then the voltage drop across them changes from  $3.63 \times 10^{-7} \times 10^7 = 3.63$  Volts to  $6.72 \times 10^{-7} \times 10^7 = 6.72$ : this is a change of 3.09 Volts for a control potential change of 1.5 Volts: the amplification factor is now 3.09/1.5 = 2.06.