Supporting Information

Hydrothermal Fabrication of Hierarchically Macroporous Zn₂SnO₄ for Highly Efficient Dye-sensitized Solar Cells

Yu-Fen Wang, Ke-Nan Li, Yang-Fan Xu, Hua-Shang Rao, Cheng-Yong Su, and Dai-Bin Kuang*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.

Email: <u>kuangdb@mail.sysu.edu.cn</u>.

Fig. S1 FE-SEM image of the PS: (a) 200 nm, (b) 400 nm, (c) 600 nm and (d) 750 nm. Insets are the corresponding high-magnification FE-SEM images.

Fig. S2 FE-SEM image of the $PS@Zn_2SnO_4$ nanocrystal. Insets are the corresponding high-magnification FE-SEM images

Fig. S3 High-magnification TEM images of Zn_2SnO_4 NPs of different sizes of macroporous Zn_2SnO_4 : (a) **I**, (b) **II**, (c) **III** and (d) **IV**.

Fig. S4 The electron diffusion coefficient of DSSCs based on different Zn_2SnO_4 photoelectrodes, $\blacksquare: I, \bullet: II, \blacktriangle: III \text{ and } \forall: IV.$

Fig. S5 (a) The electron transport time as a function of photoelectron density, (b) electron recombination time constant as a function of open-circuit voltage under different light intensity, (c) electron diffusion coefficient as a function of photoelectron density, (d) electron collection efficiency as a function of photoelectron density, and (e) effective electron diffusion length as a function of photoelectron density. The DSSCs based on different hierarchical macroporous Zn_2SnO_4 photoelectrodes with the film thickness of ~15 µm, \blacksquare : 180 nm, \odot : 375 nm, \blacktriangle : 550 nm and ∇ : 650 nm.

Fig. S6 High-magnification TEM images of Zn_2SnO_4 NPs prepared via the hydrothermal process in the absence of PS spheres.

Fig. S7 Photocurrent density-voltage (J-V) curves of the DSSCs based 4.2 nm Zn_2SnO_4 nanoparticle with different thicknesses.

Table S1. Detailed photovoltaic parameters (J_{sc} , V_{oc} , FF, and η) of dye-sensitized 4.2 nm Zn₂SnO₄ nanoparticle solar cells with different thicknesses.

Film thickness / µm	$J_{\rm SC}$ / mA cm ⁻²	$V_{\rm OC}$ / mV	η/ %	FF	
6.0	4.79	739	2.54	0.72	
8.9	7.29	713	3.75	0.72	
12.2	9.07	697	4.51	0.71	
15.0	11.05	674	5.36	0.72	
19.1	9.99	650	4.67	0.72	

Fig. S8 Photocurrent density-voltage (*J-V*) curves of the DSSCs based on a double layer photoelectrode consisting of 4.2 nm Zn_2SnO_4 nanoparticle (15 µm in thickness) and 180 nm Zn_2SnO_4 macropore (4 µm in thickness).