Supplementary Information

Metal-Insulator Transition in Variably Doped (Bi₁₋

$_x$ Sb_x)₂Se₃ Nanosheets

Chee Huei Lee, ^{†,‡} *Rui He*, ^{§,*} *ZhenHua Wang*, ^{†,¶} *Richard L.J. Qiu*, [†] *Ajay Kumar*, [‡] *Conor Delaney*, [§] *Ben*

Beck,[§] T. E. Kidd,[§] C. C. Chancey,[§] R. Mohan Sankaran,[‡] and Xuan P. A. Gao, ^{†, *}

[†]Department of Physics, Case Western Reserve University, Cleveland, OH 44106, U.S.A.

[‡]Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.

[§]Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, U.S.A.

[¶]Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

*Email: (R.H.) rui.he@uni.edu; (X.P.A.G.) xuan.gao@case.edu

Evidence of multi-band transport in doped (Bi_{1-x}Sb_x)₂Se₃ nanosheets in Hall effect data

In un-doped Bi₂Se₃ nanosheet, due the high bulk carrier density (>10¹⁹/cm³) from Se vacancies, the transport is dominated by the bulk carriers and Hall resistance shows a nearly perfect linear relationship with perpendicular magnetic field, *B* (solid black line, Figure S1). The extracted Hall slope, $R_{\rm H}=R_{\rm xy}/B$, from linear fitting of $R_{\rm xy}(B)$ is expected to relate to the bulk carrier density $n_{\rm b} = -1/(eR_{\rm H})$. However, as Sb doping reduces the bulk carrier density and conductivity contribution, the effect of surface states conduction in topological insulators is expected to be readily observable through non-linear Hall slope data. ^{1, 2} In a two band transport system, the $R_{\rm xy}$ is given by ²

$$R_{xy}(B) = -(B/e)[(n_{s}\mu_{s}^{2} + n_{b}\mu_{b}^{2}) + B^{2}\mu_{s}^{2}\mu_{b}^{2}(n_{s} + n_{b})]/[(n_{s}\mu_{s} + n_{b}\mu_{b})^{2} + B^{2}\mu_{s}^{2}\mu_{b}^{2}(n_{s} + n_{b})^{2}]$$
(1)

where n_s , μ_s and n_b , μ_b represent the carrier density and mobility for the surface and bulk channel. Eq. 1 approaches the asymptotic behavior $R_{xy}/B(\infty) = -(1/e)(n_s+n_b)^{-1}$ in the strong field limit, and approaches $R_{xy}/B(0) = -(1/e)(n_s\mu_s^2 + n_b\mu_b^2) / (n_s\mu_s + n_b\mu_b)^2$ in the small field limit. If $\mu_b \neq \mu_s$, then one has a field dependent R_{xy}/B and the field Hall slope is larger than the high field slope: $|R_{xy}/B(0)| > R_{xy}/B(\infty)$. This effect was indeed observed in our doped $(Bi_{1-x}Sb_x)_2Se_3$ nanosheet samples. Figure S1 A compares the R_{xy} data for a pure sample and a $(Bi_{1-x}Sb_x)_2Se_3$ nanosheet sample with $x\sim0.17$. The non-linear $R_{xy}(B)$ data in doped sample is illustrated by the linear extrapolations of high field data not passing origin (dashed lines). The difference in Hall effect between un-doped and doped samples is further highlighted in plotting R_{xy}/B vs. in Figure S1B. In contrast to the constant Hall slope for un-doped sample, the magnitude of R_{xy}/B gradually decreases and approaches a constant value at high *B*, as Eq.1 predicts.

Fig. S1. (A) Field dependent Hall resistance for pure Bi₂Se₃ nanosheet and $(Bi_{1-x}Sb_x)_2Se_3$ nanosheet with *x*=0.17 at various temperatures, to show the nonlinear R_{xy} vs *B* in doped sample. (B) The Hall slope R_{xy}/B plotted as a function of *B* for pure and doped samples, highlighting the constant slope in pure sample vs. a *B*-dependent slope in doped sample. The non-linear R_{xy} vs *B* in doped sample is attributed to the increased contribution from the surface states channel in a two band (bulk plus surface) transport system. (C) Sheet resistance vs. temperature for the two $(Bi_{1-x}Sb_x)_2Se_3$ nanosheet samples in (A) and (B).

REFERENCES

- (1) A. A. Taskin, S. Sasaki, K. Segawa, Y. Ando, *Phys. Rev. Lett.* 2012, 109, 066803.
- (2) N. Bansal, Y. S. Kim, M. Brahlek, E. Edrey, S. Oh, *Phys. Rev. Lett.* 2012, 109, 116804.