Supplementary Information

Flexible free-standing lithium-ion electrode based on robust layered

assembly of graphene and Co₃O₄ nanosheets

Ronghua Wang, Chaohe Xu, Jing Sun^{*}, Yangqiao Liu, Lian Gao and Chucheng Lin

The State Key Lab of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road,

Shanghai 200050, China

E-mail address: jingsun@mail.sic.ac.cn (J. Sun)

^{*} Corresponding authors. Tel: +86 21 52414301. Fax: +86 21 52413122.

Fig. S1. O1s spectrum of Co₃O₄/GS hybrid film.

Fig. S2. SEM images of pure Co₃O₄.

Fig. S3. Comparative cycle performance of electrodes with different content of Co_3O_4 at a current density of 200 mA g⁻¹. In the work, $Co(OH)_2/GO$ mass ratio was varied as 1:2, 1:1 and 2:1 to optimize the lithium storage performance. The samples were named as F-Co₃O₄/GS(1:2), F-Co₃O₄/GS(1:1) and F-Co₃O₄/GS(2:1), respectively. The

sample of pure graphene film was named as F-GS. As shown in Fig. S3, it is obvious that F-Co₃O₄/GS(1:1) with Co₃O₄ content of 75 % (determined by TG analysis) exhibited the highest specific capacity and the best cyclic stability (~1200 mAh g⁻¹ after 100 cycles). In contrast, for F-Co₃O₄/GS(1:2) and F-Co₃O₄/GS(2:1), the specific capacity decayed significantly and maintained only 876 and 517 mAh g⁻¹ after 100 cycles, respectively. The specific capacity of pure graphene free-standing and binder-free electrode was only ~230 mAh g⁻¹. Graphene can improve the conductivity of the composite; however, its specific capacity is lower than that of Co₃O₄. Therefore, only with the optimal weight ratio of Co₃O₄ to GS, the hybrid film can exhibit the best performance. Here, the optimal graphene content was 75 %. In the manuscript, all the detailed discussions were based on the optimized sample F-Co₃O₄/GS(1:1) with graphene content of 75 %.

Fig. S4. Coulombic efficiency of the Co_3O_4/GS free-standing electrode at a current density of 200 mA g⁻¹.