Plasmonic enhancement of visible-light water splitting with Au–TiO₂ composite aerogels

Paul A. DeSario,^{†1} Jeremy J. Pietron,^{*1} Devyn E. DeVantier,¹ Todd H. Brintlinger,² Rhonda M. Stroud,² and Debra R. Rolison^{*1}

¹Surface Chemistry Branch (Code 6170) and ²Materials & Sensors Branch (Code 6360) U. S. Naval Research Laboratory, Washington, DC 20375, USA [†]National Research Council Postdoctoral Associate at NRL

Supplemental Figures:

Fig. S1 Nitrogen physisorption isotherm of TiO_2 , Au– TiO_2 and DP-Au/ TiO_2 aerogels.

Fig. S2 The high-resolution X-ray photo-electron spectra of the Au4*f* binding energy region for Au–TiO₂ and DP Au/TiO₂ aerogels. The intensity of the Au4*f* peak is normalized to the intensity of the Ti2p_{3/2} peak and scales linearly with increasing Au weight loading.

Fig. S3 The size distribution of Au-particle diameters in (a) 3D-8.5% and (b) DP-8.5\% Au–TiO₂ aerogels. Particle diameter was estimated from transmission electron micrographs for a total of 882 particles for DP-8.5\% and 838 particles for 3D-8.5%.

Fig. S4 The distribution of Au aspect ratio in (a) 3D-8.5% and (b) DP-8.5\% Au-TiO₂ aerogels. Aspect ratio was estimated from transmission electron micrographs for a total of 882 particles for DP-8.5\% and 838 particles for 3D-8.5%.

Fig. S5 Ratio of IPCE for 3D Au–TiO₂ and DP Au/TiO₂ aerogel photoanodes relative to TiO₂ aerogel photoanodes between 400 and 580 nm.

Fig. S6 Scanning electron microscope (SEM) micrographs for (A and B) 3D-8.5% and (C and D) DP-8.5%