Supplemental Materials

Anomalous Quantum Efficiency for Photoconduction and Its Power Dependence in Metal Oxide Semiconductor Nanowires

R. S. Chen^{1,*}, W. C. Wang², M. L. Lu³, Y. F. Chen³, H. C. Lin⁴, K. H. Chen^{4,5}, L. C. Chen⁵

¹Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

²Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

³Department of Physics, National Taiwan University, Taipei 10617, Taiwan

⁴Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

⁵Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

*Email: <u>rsc@mail.ntust.edu.tw</u>

Table SI,R. S. Chen et al

Table I. The experimental parameters including NW diameter (*d*), interdistance between two metal contact (*l*), applied bias (*V*), excitation photon energy (*E*), and light intensity (*I*) for the photoconductivity measurements of the different single-NW devices. The measured photocurrent (i_p) values of the SnO₂, TiO₂, and WO₃ NWs under the corresponding *I* ranges used for the normalized gain (Γ_n) calculations are also listed. The Γ_n value of the ZnO NW is estimated according to the i_p or Γ data in the Refs. 7.

Nanowire	d	l	V	E	Ι	i_p
Material	(nm)	(µm)	(V)	(eV)	(Wm^{-2})	(nA)
SnO ₂	280±10	2.9	0.1	3.82	0.02-510	650–1990
TiO_2	300±30	4	0.1	3.82	0.01-510	4.1–9.3
WO ₃	255±20	2.4	0.1	3.82	51-760	1.2-22
ZnO ^a	225±75	2	5	3.18	0.062-410	_

a) Ref. 7

Table SII,R. S. Chen et al

Table SI, The adopted parameters including the optical absorption coefficient (α), optical reflectivity (R_o), effective mass of electron (m_e^*) and hole (m_h^*), and energy bandgap (E_g) of the SnO₂, TiO₂, WO₃, and ZnO for the effective quantum efficiency (η_{eff}) and the surface depletion width (w) calculations. The α and R_o values are corresponding to the photon energy (E) in the table. D: direct bandgap ; I: indirect band gap.

Nanowire	Ε	α	R_o	$m_{ m e}^{*}$	$m_{ m h}^{*}$	E_{g}	D/I
Material	(eV)	(cm^{-1})		(×m _o)	(×m _o)	(eV)	
SnO_2	3.82	~1.5×10 ^{5a,b}	~0.2 ^a	0.28^{1}	0.25 ^m	3.6 ^r	D
TiO ₂	3.82	~2×10 ^{5c,d}	~0.23 ⁱ	9 ⁿ	2 ⁿ	3.0 ^s	Ι
WO ₃	3.82	~2×10 ^{5e,f}	~0.2 ^e	2.4±0.9°	2.4±0.9 ^p	3.0 ^{e,f}	Ι
ZnO	3.18	~1.5×10 ^{5g,h}	~0.2 ^{j,k}	0.24 ^q	0.45 ^q	3.3 ^t	D

- a) Z. Nabi, A. Kellou, S. Mecabih, A. Khalfi, N. Benosman, *Mater. Sci. Engineer. B* 2003, 98, 104.
- b) E. Kh. Shokr, M. M. Wakkad, H. M. A. Abd El-Ghanny, J. Phys. Chem. Solid 2000, 61, 75.
- c) C. C. Ting, S. Y. Chen, D. M. Liu, J. Appl. Phys. 2000, 88, 4628.
- d) J. D. DeLoach, G. Scarel, C. R. Aita, J. Appl. Phys. 1999, 85, 2377.
- e) M. G. Hutchins, O. Abu-Alkhair, M. M. El-Nahass, K. A. El-Hady, *Mater. Chem. Phys.* 2006, 98, 401.
- f) K. J. Patel, C. J. Panchal, V. A. Kheraj, M. S. Desai, *Mater. Chem. Phys.* 2009, 114, 475.
- g) J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 1999, 85, 7884.
- h) P. L. Washington, H. C. Ong, J. Y. Dai, R. P. H. Chang, *Appl. Phys. Lett.* 1998, 72, 3261.
- B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, Sa. K. Narayandass, G. Mohan Rao, *Cryst. Res. Technol.* 2003, *38*, 773.
- j) R. L. Hengehold, R. J. Almassy, F. L. Pedrotti, Phys. Rev. B 1970, 1, 4784.
- k) J. L. Freeouf, Phys. Rev. B 1973, 7, 3810.
- 1) K. J. Button, C. G. Fonstad, W. Dreybrodt, Phys. Rev. B 1971, 4, 4539.
- m) E. Shanthi, A. Dutta, A. Banerjee, K. L. Chopra, J. Appl. Phys. 1980, 51, 6243.
- n) C. Kormann, D. W. Bahnemann, M. R. Hoffmann, J. Phys. Chem. 1988, 92, 5196.

- o) J. M. Berak, M. J. Sienko, J. Solid State Chem. 1970, 2, 109.
- p) The $m_{\rm h}^*$ was assumed equal to $m_{\rm e}^*$, i.e. the same effective density of states of conduction band and valence band, for the WO₃ crystals.
- q) L. E. Brus, J. Chem. Phys. 1984, 80, 4403.
- r) M. Batzill, U. Diebold, Prog. Surf. Sci. 2005, 79, 47.
- s) U. Diebold, Surf. Sci. Rep. 2003, 48, 53.
- t) S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd edition (John Wiley & Son, Inc., New Jersey, 2002).

Figure S1, R. S. Chen et al

Figure S1. The photocurrent versus light intensity curves used for the normalized gain calculation for the single SnO_2 , TiO_2 , and WO_3 NWs under the excitation energy of 3.82 eV.

Figure S2, R. S. Chen et al

Figure S2. The typical photocurrent versus incident angle (θ) of laser beam from the normal for a single SnO₂ NW at E = 3.82 eV. The inset shows the schematic of the angle-dependent photocurrent measurement for a single NW.

Figure S3, R. S. Chen *et al*

Figure S3. Typical FESEM images of the individual NWs of (**a**) TiO₂, (**b**) SnO₂, and (**c**) WO₃.