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Three-dimensional (3D) diffusion model for intensity-dependent PL dynamics 

 

 

To pure polymer nanoparticles, fitting intensity-dependent PL dynamics by 3D-diffusion 

model is simple, since 1 = 0, 1 = 0 [1]. Only one problem is how to properly make an estimate 

of the effective exciton density Ne in the polymer nanoparticle solution.  

Here, we estimate Ne according the following expression, /
e a b s e ff

N N V , where Nabs is the 

absorbed photon number of polymer nanoparticles, and Veff is effective excitation volume. We 

use  
1 1

4 6 0 4 6 0 0
/ 2 3 0 3

e ff A p a rtic le
V O D N l V V

 
      , where OD460 is optical density of PFBT at 

460 nm, 460 = 2.24  10
-12

 cm
-1

 is the corresponding absorption cross section assuming 3
r   

(r is the particle radius) [2], NA is the Avogadro constant (thus 
4 6 0

/ 2 3 0 3
A

N   is equal to molar 

extinction coefficient) [3], l is optical length, V0 is the sample volume excited by pump light, 

which is equal to a cylinder with diameter of bottom area (~200 m) and height l, Vparticale is the 

volume of single nanoparticle. According to these estimated exciton density, we could easily 

obtain the exciton-exciton annihilation radius Ra and isotropic diffusion constant D. 

 

Modeling the PL quenching dynamics 

Considering the Förster resonance energy transfer model, the quenching dynamics could be 

expressed as eqs 1 [4].  
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here, I(t) is the normalized time-resolved fluorescence intensity in the blended particles, which 

is proportional to the exciton concentration at time t, I0(t) is the normalized time-resolved 

fluorescence intensity in PFBT nanoparticles, ET is energy transfer time,  = 0.5 for Förster-type 

energy transfer, g(t) is the PL intensity ratio of the time-resolved fluorescence intensity measured 

in the blended nanoparticles to the pure ones, which gives the true quenching kinetics by acceptor 

polymer molecules. 

In the mean time, assuming that the dominant quenching mechanism is the energy transfer to 

acceptor units by dipole-dipole interaction (also Förster-type), and acceptor units are randomly 

distributed in the nanoparticles, the PL intensity ratio can be described as [5] 

   
1 / 2

2 2

0 1
ex p [ / / ]

m
g t N N t              (2) 

where /
m A

N f N M    is the concentration of acceptor polymer molecules, where f is the 

fraction of dopant polymer molecules in blended particles (by weight),  = 1.0 g cm
-3

 is polymer 

density [6], NA is the Avogadro constant and M is the dopant polymer molecular mass [7]; N0 is 

the ‘critical concentration’ defined as  
3 1

0 0
[ 4 / 3 ]N R


 , where R0 is the Förster radius. 
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Figure S1. Dynamic light scattering measurements of blended nanoparticles with 10% and 30% 

dopant fraction, in which average diameter is in the range of 30-40 nm. 
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Figure S2. PL spectra for PFBT/10%PF-DBT5 and PFBT/30%PF-DBT5 nanoparticles under the 

same concentration and excitation condition (excited at 460 nm). 
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Figure S3. TCSPC data for PFBT and PFBT-C14 nanoparticles at 405 nm excitation.
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Figure S4. Molecular structure of functionalized polymer PFBT with side-chain carboxylic acid 

groups at molar fraction of 14%. 
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Figure S5. (a) Steady-state absorption and normalized PL spectra for pure PFBT-C14 

nanoparticles and blended PFBT-C14/30%PF-DBT5 nanoparticles. (b) Intensity-dependent PL 

dynamics probed at 550 nm for PFBT-C14 nanoparticles at 460 nm excitation. Red solid lines 

represent the fitting results by 3D diffusion model. 
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Figure S6. Multiexponential fitting for femtosecond time-resolved fluorescence dynamics of 

acceptor emission for PFBT-C14/ 30%PF-DBT5 nanoparticles. 
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Table S1. Multiple exponential analyses of TCSPC data for PFBT and PFBT-C14 nanoparticles. 

1 was used for modeling R0 and ET. 

 

 1/ns 2/ns ave/ns 

PFBT 0.54 (0.81) 1.29 (0.19) 0.68 

PFBT-C14 0.71 (0.84) 1.64 (0.16) 0.86 
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