Supporting Information

for

Ultra-small Fe₃O₄ nanoparticles decorated graphenes with superior cyclic performance and rate capability

By Yu Chen[#], Bohang Song[&], Li Lu[&], and Junmin Xue[#]*

[#]Department of Materials Science and Engineering, [&]Department of Mechanical Engineering, National University of Singapore, Singapore, 117576

*Corresponding author: msexuejm@nus.edu.sg

Figure S1. Size distribution of Fe₃O₄ particles (A) before and (B) after annealing.

Figure S3. High resolution XPS spectrum of C1s from GO.

Figure S4. XPS spectrum of Fe2p obtained from USIO/G.

Figure S5. Charge-discharge profiles of the annealed USIO/G composites at first two cycles after current density restored to 1800 mA g^{-1} (corresponding to total cycle numbers of 921^{st} and 922^{nd}).

Figure S6. Cycling performance of pure ultra-small iron oxide (USIO) under different current densities. Red circle: 100 cycle under current density of 100 mA g^{-1} . Blue diamond: first 3 cycles at 50 mA g^{-1} , subsequent 3 cycles at 100 mA g^{-1} , followed by 94 cycles at 500 mA g^{-1} .