Electronic Supplementary Information

Sensing Extremely Limited H2 Contents by Pd Nanogap Connected to an Amorphous InGaZnO Thin-film Transistor†

Young Tack Lee,^{‡a} Hwaebong Jung,^{‡b} Seung Hee Nam,^{a,c} Pyo Jin Jeon,^a Jin Sung Kim,^a Byungjin Jang,^b Wooyoung Lee^{*b} and Seongil Im^{*a}

- ^a Institute of Physics and Applied Physics, Yonsei University, 262 Seongsanno, Seodaemun-gu,
 - Seoul 120-749, Korea
- ^b Department of Materials Science and Engineering, Yonsei University, 262 Seongsanno,

Seodaemun-gu, Seoul 120-749, Korea

- ^c R&D Center, LG Display, Paju 413-811, Korea.
- *Corresponding author : semicon@yonsei.ac.kr & Wooyoung@yonsei.ac.kr
- ‡ Young Tack Lee and Hwaebong Jung equally contributed to this work.

Fig. S1 Fabrication of nano cracks in Pd TF. The Pd/PDMS substrate was mounted onto a stretching machine and nano cracks were created under a tensile stress

Fig. S2 Illustration of physical contact in the Pd nanogap. H_2 adsorption and penetration into the lattice of Pd induces the volume expansion of Pd TF with phase change to PdH_x , so that physical contact forms within the gap.

Fig. S3 The device structure of a-IGZO TFT was an inverted-stagger type with a width-to-length (W/L) ratio of 100/10 μ m using a bottom gate.

Fig. S4 The magnified time domain V_{OUT} plot of Fig. 4b. The V_{OUT} signal from 0.05 % is 4.95 V which is only slightly lower than that (5.0 V) of 4 % H₂ ambient.