
Supplementary Information

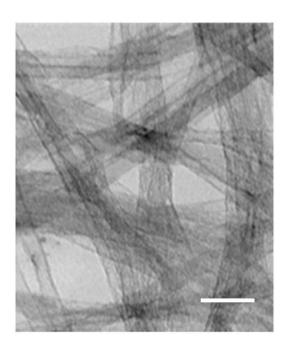
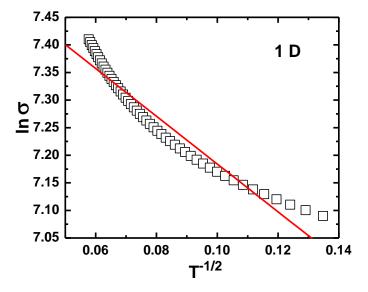
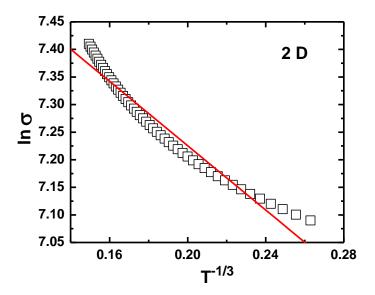
Enhanced Mechanical Strength and Electrical Conductivity of Carbon-Nanotube/TiC Hybrid Fibers

Qinghua Yi, $^{\$a}$ Xiao Dai, $^{\$a}$ Jie Zhao, Yinghui Sun, Yanhui Lou, Xiaodong Su, Qingwen Li, Baoquan Sun, Honghe Zheng, Mingrong Shen, Qinghua Wang and Guifu Zou*

Fig. S1 High resolution SEM images of CNT/TiC fiber (Scale bar: 2 μm).

^a Soochow University, Suzhou215006,P.R.China. Fax: +86-512-65228130; Tel: +86-512-65228130; E-mail: xdsu@suda.edu.cn; zouguifu@suda.edu.cn

^b Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123,P.R.China *Corresponding author \$Equal contribution

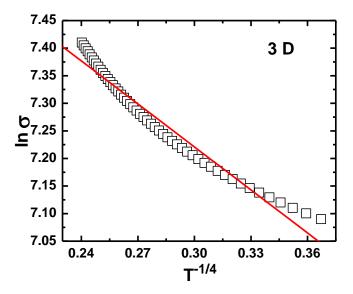

Fig. S2 TEM images of pure CNT (Scale bar: 40 nm).

Fig. S3 The fitting of $\ln \sigma vs$. $T^{1/2}$ based on the Mott's variable range hopping model: $\sigma \propto \exp(-A/T^{1/(d+1)})$, where σ is electrical conductivity, A is constant, T is the temperature, and d is the dimensionality. As this plot, d=1, that is one dimensional hopping mechanism.

Fig. S4 The fitting of $\ln \sigma vs$. $T^{1/3}$ based on the Mott's variable range hopping model: $\sigma \propto \exp(-A/T^{1/(d+1)})$, where σ is electrical conductivity, A is constant, T is the temperature, and d is the dimensionality. As this plot, d=2, that is one dimensional hopping mechanism.

Fig. S5 The fitting of $\ln \sigma vs$. $T^{1/4}$ based on the Mott's variable range hopping model: $\sigma \propto \exp(-A/T^{1/(d+1)})$, where σ is electrical conductivity, A is constant, T is the temperature, and d is the dimensionality. As this plot, d=3, that is one dimensional hopping mechanism.