Supplementary Information

Possible Gadolinium Ions Leaching and MR Sensitivity Over-Estimation in Mesoporous Silica-Coated Upconversion Nanocrystals

Shengjian Zhang, ‡ Zhaoxia Jiang, ‡ XiaoHang Liu, Liangping Zhou, Weijun Peng*

Department of Radiology, Fudan University Shanghai Cancer Center; Department of

Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China

E-mail: weijunpeng@yahoo.cn

Figure S1. High resolution TEM image of highly crystalline $NaYF_4$:Er/Yb@NaGdF₄. White line represents the boundary of $NaYF_4$ and $NaGdF_4$.

Figure S2. (A) T₂-map of free Gd³⁺ ions. (B) Plot of R_2 (1/s) versus Gd³⁺ ion concentration (mM), the slop indicates the specific relaxivity (r_2). $r_2/r_1 = 2.2$.

Figure S3. (A) T₂-map of Core@NaGdF₄@m-SiO₂ (inner core damaged). (B) Plot of R_2 (1/s) versus Gd³⁺ ion concentration (mM), the slop indicates the specific relaxivity (r_2). $r_2/r_1 = 9.6$.

Figure S4. (A) T₂-map of Core@NaGdF₄@m-SiO₂ obtained by calcination. (B) Plot of R_2 (1/s) versus Gd³⁺ ion concentration (mM), the slop indicates the specific relaxivity (r_2). $r_2/r_1 = 59.3$.

Figure S5. (A) T₂-map of Core@NaGdF₄@d-SiO₂. (B) Plot of R_2 (1/s) versus Gd³⁺ ion concentration (mM), the slop indicates the specific relaxivity (r_2). $r_2/r_1 = 9.6$.

Figure S6. MTT cell viability assay of UCNP@m-SiO₂ after different treatments to extract CTAB on HeLa cells for 24 h incubation. To decrease the cytotoxicity of calcined nanoparticles, they were subject to centrifuge at 3000 r/min for 3 min to exclude large-sized nanoparticles.

Figure S7. DLS measurements of $Core@NaGdF_4@m-SiO_2$ before and after calcinations.