Supporting information

Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system

Won-Gyu Bae, $\dagger^{a,b}$ Doogon Kim \dagger^{b} and Kahp-Yang Suh $*^{a,b,c}$

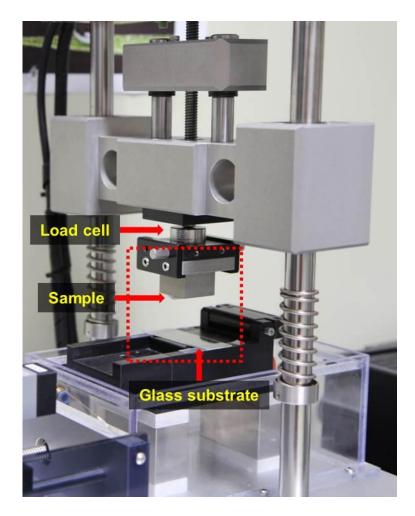
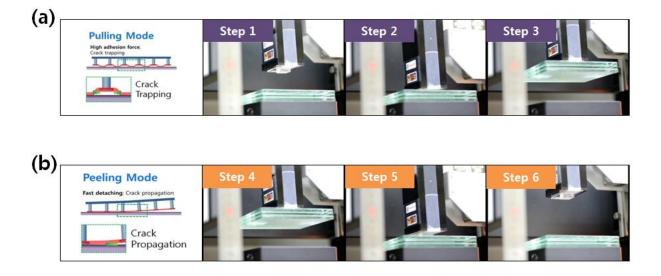
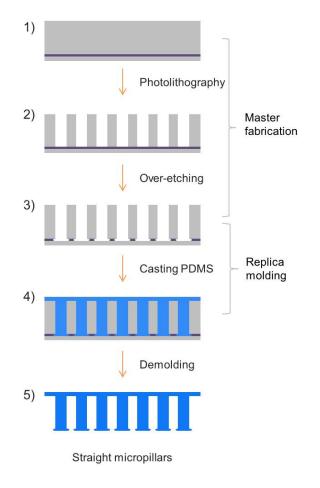
E-mail: sky4u@snu.ac.kr

^b Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea.

^c Institute of Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea.

[†] W. G. Bae and D. Kim contributed equally to this work.

^a Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea.;

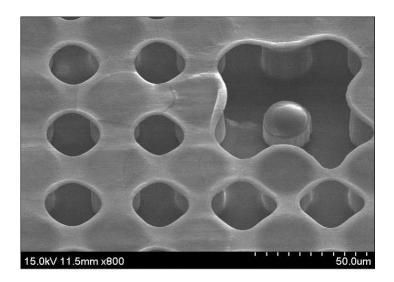

Fig. S1 A custom-built adhesion measurement system. The system is composed of a motorized driving part with a load cell moving in z (vertical) direction for installing an adhesive sample and a finely flat stage for contact surface.

Fig. S2 Video snapshots show the sequential steps of pulling and peeling modes of the bridged micropillars. Each picture corresponds to the schematic illustration of the transportation system presented in Figure 6a.

Fig. S3 A schematic illustration for fabricating the SOI master mold and replicating mushroom-like micropillars.

Fig. S4 An SEM image of the bridged micropillars with one arbitrary defect site, showing that the membrane of ~800 nm thickness is uniformly connecting the pillars in a grid, square pattern.