Supplementary Data

Hybrid carbon source for producing nitrogen-doped polymer

nanodots: one-pot hydrothermal synthesis, fluorescence

enhancement and highly selective detection of Fe (III)

Tiantian Lai,^{‡a} Enhui Zheng,^{‡a} Lixian Chen,^a Xuyang Wang,^a Lichun Kong,^a Chunping You,^b Yongming Ruan^a* and Xuexiang Weng^a* ^aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China. Fax: +86-579-82282269; Tel:+86-579-82282269; E-mail : ruanym@zjnu.cn; xuexian@zjnu.cn.

^bState Key Laboratory of Dairy Biotechnology, Technology Center, Bright Dairy and Food Co.

Ltd., Shanghai 200436, China

*Corresponding authors. ‡These authors contributed equally to this work.

Fig.S1 TEM images of PNDs-Sa (A) and PNDs-Sb (B).

Sorial	PNDs from single carbon		QY standarded by quinine sulfate	Maximum excitation
Serial	source		(%)	wavelength
1	Xylose, 0.6 g	Water,	0.55	330nm
		30mL		
2	Glucose, 0.6 g	Water,	0.14	330nm
		30mL		
3	Sucrose, 0.6 g	Water,	1.02	334nm
		30mL		
4	Glycine, 0.6 g	Water,	0.52	332nm
		30mL		
5	Alanine, 0.6 g	Water,	0.57	336nm
		30mL		
6	Phenylalanine,	Water,	1.65	338nm
	0.6 g	30mL		
7	Glycylglycine,	Water,	1.80	340nm
	0.6 g	30mL		
8	BSA, 0.6 g	Water,	0.77	332nm
		30mL		

Table S1. The QYs of PNDs from single sources (In (Teflon)-lined autoclave/150 °C for 50 min).

Fig.S2 The difference in fluorescence intensity at 425 nm of PNDs dispersion under various concentrations $[M]^{n+}$ (excitation at 340 nm).

Fig. S3 TEM image of PNDs-Fe³⁺.