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SI1. Counterclockwise hysteresis behaviour of a Pt/TiO2/Pt non-faradaic capacitor 

The counterclockwise (CCW) hysteresis in the high voltage region, shown in Fig. 1, was found to 

disappear at low voltage sweep rates. The ratio of a current density at a particular voltage during a 

downward sweep (Jdown) to that of the same voltage during an upward sweep (Jup) was taken as a 

parameter representing the CCW hysteresis. Ratios larger than unity, therefore, indicate CCW 

hysteresis. As shown in Fig. SI1, at a voltage sweep rate of 0.001 V/s, the CCW hysteresis fades away 

within the first three J-V cycles. Increasing the voltage sweep rate makes the CCW hysteresis remain 

for more cycles, as in the 0.01 and 0.1 V/s cases, as shown in Fig. SI1. For the three rates, 0.1, 0.01, 

and 0.001 V/s, the time intervals between the current measurements at 1.5 V during the upward and 
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downward sweeps are 10, 100, and 1000 s, respectively. Thus, one may estimate the CCW hysteresis 

to retain itself for at least 100 s, since the CCW hysteresis at 0.01 V/s still somehow exists. However, 

it should be kept in mind that this CCW hysteresis occurs under high polarization conditions, i.e. 

polarization still prevails over depolarization. Therefore, under strong depolarization conditions, e.g. 

at zero voltage, higher current states as a result of the CCW hysteresis cannot be maintained for an 

extended period of time, i.e. the time constant of depolarization is small.  

 

 

Figure SI1. Change of the CCW hysteresis in the high voltage region with respect to J-V cycle 

number at different voltage sweep rates. 

 

SI2. Calculation of ionic current in a non-faradaic capacitor 

In a mixed ionic-electronic conductor (MIEC), both electrons and mobile ions/defects contribute to 

the dc current. In a non-faradaic capacitor, the interface between the MIEC and electrode forms a 

blocking contact for mobile ions/defects. Hence, the number of the mobile ions/defects is conserved 

in the capacitor, i.e. they are confined in the MIEC. However, for electrons this capacitor is regarded 

as an open system connected to an electron reservoir. The dc ionic and electronic currents are 

described separately below. 

   Dc current in a MIEC is driven by two driving forces, chemical and galvani potential gradients. 

The former and the latter are termed diffusion and drift currents. Within the scope of a first-order 

approximation, the summation of drift and diffusion fluxes of charged particle 𝑖, 𝑗!"#$%!  and 𝑗!"##! , 
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through a one-dimensional electrode/MIEC/electrode capacitor, which is termed as drift-diffusion flux 

𝑗!!! , is given by 

 

𝑗!!! = 𝑧!𝑐!𝜇!𝐸 − 𝐷!
!!!

!"
,        (SI1) 

 

where 𝑧! , 𝑐! , 𝜇! , 𝐷! , and 𝐸  denote the ionization number, the concentration, the mobility of 

particle 𝑖, the diffusion coefficient, and the internal electric field, respectively. The first and the 

second term on the right side of Eq. (SI1) mean the drift and the diffusion fluxes, respectively. 

Therefore, the dc ionic current density attributed to the drift-diffusion of particle 𝑖 is 𝑗!"! = 𝑧!𝑞𝑗!!! , 

where 𝑞 means the elementary charge. For TiO2 MIEC, 𝑖 = 𝑉!∙∙, denoting oxygen vacancy in the 

Kröger-Vink nomenclature.1 

 

 

Figure SI2. (a) Schematic of a non-faradaic capacitor utilizing an MIEC. A voltage is applied to the 

right electrode while the left electrode is grounded. (b) Configuration of the nodes in a one-

dimensional non-faradaic capacitor in distance x and time t dimensions. 

 

   In a non-faradaic capacitor, the migration mobile ions/defects are confined within the MIEC, i.e. 

the drift-diffusion fluxes at the two interfaces of the capacitor are zero. That is, no exchange of 

ions/defects takes place through the interfaces. These boundary conditions play a key role in 
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evaluating the time-dependent distribution of ions/defects in the MIEC. When a faradaic-type 

capacitor is dealt with, appropriate formalism for ion/defect fluxes at the interface, e.g. the Butler-

Volmer equation, can be used as boundary conditions instead.2, 3 

  

SI3. Calculation of dc electronic current in a non-faradaic capacitor 

For electrons, the non-faradaic capacitor is not a closed system so that their injection into and ejection 

from the capacitor and their drift-diffusion in the MIEC should be taken into account. It was assumed 

here that electrons in the electrode exhibit free electronic behaviour and the MIEC has a single 

conduction band minimum. Also, it was assumed a mechanism for the injection of electrons from the 

electrode to the MIEC to be thermionic emission attributed to electron injection overcoming the band 

offset, i.e. Schottky barrier, at the electrode/MIEC interface.4 Electronic current density from the 

MIEC to electrode (reservoir), i.e. electron’s flux from the electrode to the MIEC, is denoted by 𝑗!",!! .  

The reverse current density 𝑗!",!! , attributed to the electron’s flux from the MIEC to the electrode, 

should also be considered to describe the dc electronic current density at the interface. This reverse 

current density can be expressed as the following equation: 

 

𝑗!",!! = 𝑞𝑣!𝑛!,              (SI2)  

 

where 𝑣! =
!∗!!

!!!
, and 𝐴∗ , T, and  𝑁!  denote the Richardson constant, temperature, the effect 

density of states for electrons in the MIEC.5 And 𝑛! in Eq. (SI2) indicates the concentration of 

electrons at the interface. In this model system, a voltage is applied to the right electrode as shown in 

Fig. SI2 a). In accordance, electric current along the positive x-axis is taken as positive. This results in 

the opposite polarity of electric current such as negative current under a positive voltage, however, 

later we make the polarity reversed. The net current density at the left interface in Fig. SI3 a) can 

therefore be written as 𝑗!"! = 𝑗!",!! − 𝑗!",!! , whereas that at the right interface 𝑗!"! = −𝑗!",!! + 𝑗!",!! . 
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These two equations serve as the boundary conditions for the electrons’ transport through the 

capacitor. 

   Electronic current density in the MIEC is described in terms of the distribution of electrons and a 

gradient of their electrochemical potential, i.e. Fermi level 𝜖!. For a one-dimensional system, an 

electronic current density equation is 𝑗!"! = 𝑛𝜇!𝑑𝜖!/𝑑𝑥 , where n and 𝜇!  denote electron 

concentration and electron’s mobility, respectively. In addition, the electron concentration in the 

MIEC depends on the electron’s effective mass 𝑚!, the conduction band minimum 𝜖!, and the 

electron’s electrochemical potential 𝜖!, through the following equation: 

 

𝑛 = 𝑔 𝜖 𝑓 𝜖 𝑑𝜖!
!!

,         (SI3) 

 

where the density of states of electrons 𝑔 𝜖 = !! !!!
! !/!

!!
𝜖 − 𝜖!

!/!
. Now, the electronic current 

density in the MIEC becomes a function of the distribution of the electrons’ electrochemical potential 

and the galvani potential. Note that the conduction band minimum 𝜖! is a function of the galvani 

potential V through the equation, 𝜖! = 𝜙! − 𝑞𝑉 , where 𝜙!  denotes the band offset at the 

electrode/MIEC interface. 

   The time-domain calculation of ionic and electronic current density cannot be performed using an 

analytical method, and thus the Crank-Nicolson method was employed, combing explicit and implicit 

finite difference methods.6 In this time-domain calculation, electrons’ behaviour can be evaluated 

using a quasi-static approximation since electron’s mobility is much larger compared to that of an ion 

or an ionic defect. Employing the quasi-static approximation gives the important condition that 

electronic current density is constant at all positions in the one-dimensional MIEC at a given time. 

This condition defines the relationship between galvani potential and electrochemical potential, 

implying that these two variables are dependent on each other. That is, if the distribution of galvani 

potential is known, so is that of electrochemical potential. 

 

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013



 6 

SI4. Calculation of time-dependent current in a non-faradaic capacitor 

Considering the configuration of current density – voltage (J-V) measurements on a non-faradaic 

capacitor, a capacitor illustrated in Fig. SI2 a) together with an equivalent series resistance (ESR) 

should be taken into account. An ESR includes all possible resistance contributions in the 

configuration, e.g. electrode resistance, wire resistance, and internal resistance of the measurement 

setup. Concerning the voltage division in the configuration, an applied voltage 𝑉!", which is time-

dependent, is expressed as  

 

𝑉!" = −𝐴𝑅!"#𝑗 + 𝑉!,         (SI4) 

 

where 𝐴, 𝑅!"#, 𝑗, and 𝑉! mean the area of the capacitor, the ESR, total current density including dc 

and displacement current, and the voltage drop along the capacitor, respectively. The total current 

density 𝑗 is described as 

 

𝑗 =    𝑗!" − 𝜖!𝜖!
!
!"

!"
!"

,         (SI5) 

 

where the first and the second terms on the right side of Eq. (SI5) denote dc and displacement currents, 

respectively. 𝑗!" is the summation of dc ionic current 𝑗!"!  and dc electronic current 𝑗!"! , which are 

discussed in Sections 1 and 2, respectively. 𝜖!, 𝜖!, and 𝑉 are a relative permittivity, the permittivity 

of vacuum, and galvani potential, respectively. Integrating Eq. (SI5) over time from zero to 𝑡!gives 

 

!"
!" !!!!

= !"
!" !!!

+ 𝜖!𝜖! !! 𝑗!" − 𝑗 𝑑𝑡
!!

! .      (SI6) 

 

Again, by integrating Eq. (SI6) over 𝑥 from zero to the capacitor thickness, 𝑑! + 𝑑! + 𝑑!, one can 

evaluate the voltage assigned to the capacitor 𝑉! at 𝑡! as follows: 
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𝑉! 𝑡′ = 𝑉! 0 + 𝜖!𝜖! !! 𝑗!" − 𝑗 𝑑𝑡𝑑𝑥
!!

!
!
! .     (SI7) 

 

Due to charge conservation, Fick’s second law for electric charge in this one-dimensional capacitor is 

described as 𝑑𝑗!"/𝑑𝑥 = −𝑑𝜌/𝑑𝑡, where 𝜌 means charge density. Using the Poisson’s equation, 

𝜌 = 𝑑𝐷/𝑑𝑥, where 𝐷 means dielectric displacement, 𝐷 = −𝜖!𝜖!𝑑𝑉/𝑑𝑥, Fick’s second law can be 

rewritten as  

 

!
!"

𝑗!! +
!"
!"

= !
!"

𝑗!" − 𝜖!𝜖!
!
!!

!"
!"

= !"
!"
= 0.     (SI8) 

 

Solutions of Eq. (SI8) are constant along axis 𝑥, meaning that the total current density 𝑗 is not a 

function of 𝑥. Therefore, Eq. (SI7) can be rewritten as 

 

𝑉! 𝑡′ = 𝑉! 0 + 𝜖!𝜖! !! 𝑗!"𝑑𝑡𝑑𝑥
!!

!
!
! − 𝜖!𝜖! !!𝑑𝑥 𝑗𝑑𝑡!!

!
!
! .   (SI9) 

 

Entering Eq. (SI9) into Eq. (SI4) gives an equation relating an applied voltage 𝑉!" to the dc current 

density 𝑗!" and the total current density 𝑗 as follows: 

 

𝑉!" = −𝐴𝑅!"#𝑗 + 𝑉! 0 + 𝜖!𝜖! !! 𝑗!"𝑑𝑡𝑑𝑥
!!

!
!
! − 𝜖!𝜖! !!𝑑𝑥 𝑗𝑑𝑡!!

!
!
! .   (SI10) 

 

For an easier calculation, Eq. (SI10) needs to be differentiated with respect to time, which leads to  

 

!!!"
!"

= −𝐴𝑅!"#
!"
!"
+ 𝜖!𝜖! !!𝑗!"𝑑𝑥

!
! − 𝑗 𝜖!𝜖! !!𝑑𝑥!

! .    (SI11) 

 

Eq. (SI11) can be numerically solved using the Crank-Nicolson method.7 Nodes along 𝑥 and 𝑡 axes 
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are illustrated in Fig. SI2 b). Using the Crank-Nicolson method, Eq. (SI11) in the time interval 

  𝑡! − 𝑡! + ∆𝑡  is expressed as 

 

∆𝑡!! 𝑉!" 𝑡! + ∆𝑡 − 𝑉!" 𝑡! = −𝐴𝑅!"#∆𝑡!! 𝑗 𝑡! + ∆𝑡 − 𝑗 𝑡! + 𝐵! − 𝐵!𝑗 𝑡! + ∆𝑡 , (SI12) 

 

where  

 

𝐵! = 𝜖!𝜖! !!𝑗!" 𝑡! + ∆𝑡 ∆𝑥!!!
!!! ,      (SI13) 

 

and 

 

𝐵! = 𝜖!!! 𝜖!!!!𝑑! + 𝜖!!!!𝑑! + 𝜖!!!!𝑑! .      (SI14) 

 

where, 𝜖!!   𝑑! , 𝜖!!   𝑑! , and 𝜖!!   𝑑!  denote the relative permittivities (thicknesses) of the left 

Helmholtz layer, the right Helmholtz layer, and rest of the capacitor volume, respectively. Eq. (SI12) 

can be further rearranged by entering Eq. (SI4) into it as follows: 

 

𝑗 𝑡! + ∆𝑡 = −(𝐴𝑅!"# + 𝐵!  ∆𝑡)!! 𝑉!" 𝑡! + ∆𝑡 − 𝑉! 𝑡! − 𝐵!∆𝑡 .  (SI15) 

 

Insomuch as the current density 𝑗 is constant in the MIEC at a given time, from Eq. (SI5), galvani 

potential distribution in the MIEC can be evaluated as far as the dc current 𝑗!" in Eq. (SI5) is known 

at all position nodes in the MIEC at a given time. 

   As mentioned earlier, electron distribution in the MIEC can be simplified using the quasi-static 

approximation so that it is time-independent. However, ion/defect distribution should be taken into 

account in a time domain. Again, Fick’s second law can be utilized for this purpose. Fick’s second 

law for ion/defect 𝑖 can therefore be described as  
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!!!
!"
= − !!!!

!

!"
.         (SI16) 

 

The drift-diffusion flux of oxygen vacancies 𝑗!!!  is a function of galvani potential and so is the 

concentration of ion/defect 𝑖 via Eq. (SI16). For a non-faradaic capacitor based on TiO2 MIEC, 

𝑖 = 𝑉!∙∙ as mentioned earlier. In a non-faradaic capacitor, the drift-diffusion flux of oxygen vacancies 

𝑗!!!  is zero at the two interfaces so that this condition works as a boundary condition in solving Eq. 

(SI16). 

   As above-mentioned, all three different current types, 𝑗!"! , 𝑗!"! , and 𝑗, are given by functions of 

galvani potential distribution and they are indeed self-consistent equations. This means that, by means 

of an iteration method, one can evaluate the three quantities at all positions (nodes) in the MIEC as 

well as time nodes in a time domain. In this calculation, the Newton-Raphson iteration was utilized.  

 

SI5. Impedance spectroscopy of a Pt/TiO2/Pt non-faradaic capacitor 

The dielectric constant of TiO2 MIEC was determined from its admittance spectra. As suggested by 

Jeong et al., an equivalent circuit of a Pt/TiO2/Pt capacitor is a parallel connection of a capacitor and a 

resistor.7 The admittance 𝑌of this capacitor is  

 

𝑌 = 𝑗2𝜋𝜔𝐶 + 1/𝑅,         (SI17) 

 

where 𝜔, C, and R denote frequency, the capacitance and the resistance of the capacitor, respectively. 

Therefore, from the imaginary part of an admittance spectrum, 𝐼𝑚 𝑌 , the capacitance can be 

extracted. For capacitors with five different pad-sizes, each 𝐼𝑚 𝑌  spectrum is plotted in Fig. SI3 a). 

Note that, at frequencies below 1 MHz, neither open circuit nor short circuit calibration was necessary. 

The measured spectra show the good linearity of 𝐼𝑚 𝑌  and frequency as shown in Fig. SI3 a). 

Eventually, the dielectric constant of TiO2 is evaluated by plotting the capacitance vales of the five 
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capacitors with respect to the pad-sizes. From the slope of the data in Fig. SI3 b), a dielectric constant 

of approximately 39 can be obtained. This value serves as one of critical parameters for the J-V 

calculations.  

 

 

Figure SI3. (a) Admittance spectra (imaginary part) of Pt/TiO2/Pt non-faradaic capacitors with five 

different pad-sizes. (b) Capacitance vales extracted from the admittance spectra with respect to pad-

size. The dielectric constant of the MIEC was evaluated from the slope to be approximately 39. 

 

SI6. Influence of oxygen gas injection during top electrode deposition on the CCW J-V 

hysteresis  

To identify the nature of mobile point defects in a Pt/TiO2/Pt capacitor, we fabricated a similar 

capacitor with injection oxygen gas during top electrode deposition. It can be predicted that top 

electrode deposition perhaps causes the reduction of TiO2 MIEC in chemical and/or mechanical 

manners. To prevent this possible reduction, oxygen gas was injected while the Pt top electrode was 

deposited. For convenience, let us term this capacitor as Pt(O)/TiO2/Pt. As can be seen in Fig. SI4, the 

oxygen injection process leads to significant shrinkage of CCW as well as CW J-V hysteresis. We 

estimate that the injected oxygen gas was used in the re-oxidation of the TiO2 MIEC, and thus the 

number of oxygen vacancies is significantly reduced in the Pt(O)/TiO2/Pt capacitor compared with a 

Pt/TiO2/Pt capacitor. Therefore, this experimental result is believed to indicate oxygen vacancy as a 

type of the dominant point defect in the Pt/TiO2/Pt capacitor. 
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Figure SI4. J-V hysteresis of a Pt(O)/TiO2/Pt capacitor, compared with that of a Pt/TiO2/Pt capacitor.  

 

SI7. Conversion of an oxygen vacancy diffusion coefficient into an oxygen self-diffusion 

coefficient 

The oxygen vacancy diffusion coefficient DVo used in the calculation is required to be converted into 

an oxygen self-diffusion coefficient DO for comparison with high-temperature oxygen self-diffusion 

coefficient data. This conversion can be done using the equation DO=cVoDVo/(cO-cVo), where cO and 

cVo denote oxygen ion and oxygen vacancy concentration, respectively. The oxygen ion concentration 

in our TiO2 MIEC was assumed to be 6.4×1022 cm-3, which is that of single crystalline rutile TiO2. 

The oxygen vacancy concentration in this calculation was 9×1018 cm-3, areal density of oxygen 

vacancies (4.5×1013 cm-2) divided by the thickness of the TiO2 film (d2=50 nm). Thus, cO>>cVo, so 

that DO ≈cVoDVo/cO, which is 7.03×10-17 cm2/s. 

 

SI8. Dependence of the output current on input voltage pulse height and width 

The output current of the non-faradaic capacitor was measured by applying voltage pulses of various 

heights and widths. An output current density map against the height and width of applied voltage 

pulses is plotted in Fig. SI5. 
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Figure SI5. Output current density map of the non-faradaic capacitor with respect to input voltage 

(Vin) height and width.  
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