C-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging

Ramesh Sharma^{†‡*}, Youwen Xu[†], Sung Won Kim[†], Michael J. Schueller[†], David Alexoff[†], S. David Smith[†], Wei Wang^{II}, and David Schlyer^{†*}

[†]Brookhaven National Laboratory, Upton, NY 11973

[‡]Gordon Battelle Memorial Institute, Columbus, OH 43201

^{II}Oak Ridge National Laboratory, Oak Ridge, TN 37831

*Corresponding authors: <u>ramesharma26@gmail.com</u>, <u>schlyer@bnl.gov</u>

Supporting Information

(1) Synthesis, surface functionalization and purification of magnetic iron-oxide nanoparticles

Deionized H_2O (resistance ~18 M Ω ·cm) was used throughout the experiments, and all reactions were performed under N_2 atmosphere or in closed containers to protect samples from oxidation. Superparamagnetic Fe₃O₄ nanoparticles (SPIO NPs) were prepared by a chemical coprecipitation method¹ at room temperature (23 °C). Typically, 0.2 M FeCl₃ (anhydrate, EM Science) and 0.1 M FeSO₄·7H₂O (J. T. Baker) were mixed in 100 mL H₂O under N₂. Then 10 mL of 29.5 wt% NH₃·H₂O (J. T. Baker) was injected into the mixture with vigorous stirring. Upon adding the NH₃·H₂O, the color of the mixture turned from brown to black immediately, implying formation of iron hydroxide. After stirring overnight for dehydration, the deep brown Fe₃O₄ NPs were collected by magnet and washed three times with deionized water.

The Fe₃O₄ NPs were surface-modified with –COOH or –NH₂ groups through covalent bonding. To functionalize the surface with –COOH groups, the Fe₃O₄ nanoparticles were dispersed in a 250 mL mixture of ethanol and H₂O (volume ratio 20: 1) at pH~8.5 adjusted by NH₃·H₂O, and then 2 mL of N(trimethoxysilylpropyl) ethylenediamine-triacetic acid-trisodium salt (35% in water, Gelest) as a silane coupling agent was added drop by drop while stirring. After 12 hours, the reaction mixture was adjusted to pH ~3.5 by HCl, and the reaction was terminated after 12 hours. The -COOH functionalized Fe₃O₄ NPs were collected by a bar magnet and repeatedly washed with deionized water five times. In the washing process, particles were re-dispersed by a vortex mixer and separated by a magnet so that ionic and nonmagnetic impurities could be removed. To functionalize the surface of Fe₃O₄ NPs with –NH₂ groups, the same protocol was repeated using a different silane agent, 3-aminopropyltriethoxysilane (APTES), (99+%, Gelest), which contains a –NH₂ functional group.

Surface charge properties were evaluated by zeta potential measurements with the dynamic light scattering method (Brookhaven ZetaPlus analyzer). The measurements show zeta

potentials of -33.6 \pm 2.7 mV for unmodified NPs, 34.1 \pm 3.7mV for $-NH_2$ modified NPs and -46.6 \pm 3.1 mV for -COOH modified NPs in water.

(2) Synthesis, surface functionalization and purification of SiO₂ nanoparticles

Silica NPs were synthesized by the Stöber method² of hydrolyzing tetraethoxysilane (TEOS) with ammonia as a catalyst in microemulsion media.³ The microemulsion was first prepared by mixing 25.0 g Igepal CO-520 (Aldrich), 210 mL cyclohexane (EM Science), 3.3 mL H₂O and 2.5 mL 29.5% NH₃·H₂O under magnetic stirring, and then 9.3 mL TEOS (\geq 99%, Aldrich) was added in the microemulsion under vigorous stirring. Hydrolysis and condensation of the TEOS monomers catalyzed by ammonia allow for formation of SiO₂ NPs. The reaction was continued for 24 hours to allow for completion to produce ~1g SiO₂ NPs. Surface functionalization of SiO₂ NPs with –NH₂ functional groups was carried out by dropwise addition of 10 mL silane coupling agent, APTES (10% in cyclohexane), to the microemulsion. Upon completion of the reaction in 24 hours, the microemulsions were broken by adding isopropanol, and the functionalized NPs were separated by centrifuge. The NPs were purified by washing with acetone, ethanol and water by re-dispersion-centrifugation cycles. Finally, the NPs were redispersed in water and transferred into a dialysis tube (SnakeSkin Pleated Dialysis Tubing, 3500 MWCO, Thermo Scientific) and then dialyzed in deionized water (resistivity ~18.2 MΩ·cm) to remove soluble impurities until the electrical conductivity was <2 µS.

Surface charge properties of the synthesized NPs were examined by dynamic light-scattering measurements (Brookhaven ZetaPlus analyzer). The measurements show zeta potentials of -35.4 ± 2.3 mV for unmodified and 34.8 ± 3.7 mV for $-NH_2$ modified silica NPs.

Figure S1| The TEM images of iron-oxide NPs (16 nm, Left), silica NPs (32 nm, Middle) and platinum NPs (2.5 nm, Right) used in C-11 labeling experiments.

Figure S2 The magnetization curves of iron-oxide NPs acquired at 100 K (squares) and 300 K (circles) indicate the superparamagnetic behavior for these particles.

Figure S3 The radioactivity measurements in the C-11 labeled NPs during the course of purifications. The 3 corresponding data points (\bigstar) obtained after second, third and fourth washings, respectively, are plotted for 4 different types of NPs. The solid line is the theoretical radioactivity curve for C-11 ($t_{1/2} = 20.4$ min). The experimental values (normalized to a value corresponding to the second wash) approximately match the theoretical values, confirming most of the C-11 labeling does not come off of the particles during the multiple cycles of washings.

Figure S4I The TGA measurement of COOH-functionalized SPIO NPs shows the ligand composition in the dry sample is < 8% by mass.

Figure S5 Radio-TLC chromatograms of ¹¹C-labeled SiO₂-NH₂ NPs show the radioactive decay is present primarily at the origin. The TLC solvent systems were (1) hexane, (2) mixture of hexane and ethyl acetate (volume ratio 1:1), (3) water and (4) acetonitrile.

Figure S6 Radio-TLC chromatograms of ¹¹C-labeled iron-oxide-COOH NPs show the radioactive decay is present primarily at the origin. The TLC solvent systems were (1) hexane, (2) mixture of hexane and ethyl acetate (volume ratio 1:1), (3) water and (4) acetonitrile.

Figure S7 Radio-TLC chromatograms of ¹¹C-labeled iron-oxide-NH₂ NPs show the radioactive decay is present primarily at the origin. The TLC solvent systems were (1) hexane, (2) mixture of hexane and ethyl acetate (volume ratio 1:1), (3) water and (4) acetonitrile.

Figure S8 Radio-TLC chromatograms of ¹¹C-labeled platinum-COOH NPs show the radioactive decay is present primarily at the origin. The TLC solvent systems were (1) hexane, (2) mixture of hexane and ethyl acetate (volume ratio 1:1), (3) water and (4) acetonitrile.

Figure S9 The radio-HPLC chromatograms of supernatant solutions obtained from the final washes of ¹¹C-labeled NPs. The small peak positioned around 2 min is residual [¹¹C]CH₃I or [¹¹C]CH₃OH byproduct in the reaction mixture. The amount of radioactivity in the supernatant solution compared to ¹¹C-labeled NPs was 10% or less, determined independently through radioactive decay measurements.

References:

- 1. A.-H. Lu, E. L. Salabas and F. Schüth, *Angewandte Chemie International Edition*, 2007, **46**, 1222-1244.
- 2. W. Stöber, A. Fink and E. Bohn, *Journal of Colloid and Interface Science*, 1968, **26**, 62-69.
- 3. W. Wang and S. A. Asher, *Journal of the American Chemical Society*, 2001, **123**, 12528-12535.