Electronic Supplementary Information

Single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2Dnanostructured composites with iron oxide nanoparticles

Dris Ihiawakrim,^a Ovidiu Ersen,^a Frédéric Melin,^b Petra Hellwig,^b Izabela Janowska,^c Dominique Begin,^c Walid Baaziz, ^c Sylvie Begin-Colin, ^c Cuong Pham-Huu^c and Rachid Baati*^d

^aInstitut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France.

^bLaboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la matière complexe, Université de Strasbourg-CNRS, 67070 Strasbourg, France

^cLaboratoire des Matériaux Surfaces et Procédés pour la Catalyse, UMR 7515 CNRS,

European Laboratory for Catalysis and Surface Sciences, 25 rue Becquerel, 67087 Strasbourg, France

^dUniversité de Strasbourg, Faculté de Pharmacie, UMR /CNRS 7199, 74 Route du Rhin 67401 Illkirch

corresponding author : <u>rachid.baati@unistra.fr</u>

Content

1.	Non-covalent functionalization and exfoliation of graphene from graphite	
	with NH ₂ -His ₆ -pyrene 1 and TEM analysis	p. S3
2.	Raman analysis of His ₆ @GN	p. S5
3.	X-ray photoelectron spectroscopy (XPS) spectra of GN	p. S6
4.	UV-absorption of NH ₂ -His ₆ -pyrene and His ₆ @GN in water	p. S7
5.	Electrical resistance measurements	p. S7
6.	Hierarchical self-assembly of His ₆ @GN with magnetic Fe ₃ O ₄	
	nanoparticles	p. S7
7.	Magnetic properties of iron-oxide/graphene composite	p. S9

1. Non-covalent functionalization and exfoliation of graphene from graphite with His₆-pyrene 1 and TEM analysis

(See Methods in the manuscript)

TEM analysis

The conventional TEM, high-resolution TEM (HRTEM) analysis have been performed on a JEOL 2100F (FEG) TEM/STEM electron microscope operating at 200 kV, equipped with a Cs probe corrector and a TRIDIEM post-column GATAN imaging filter. In order to minimize the irradiation damages, the specimen has been maintained at low temperature during the measurements by using a cryo-holder.

Figure S1. *Top*: TEM images recorded on typical fragments obtained by: a) simple sonication of expanded graphite without amphiphilic molecule; b) assisted-exfoliation of expanded graphite by NH₂-His₆-pyrene. *Bottom*: optical images of the samples containing the solution; c) non functionalized expanded graphite in water, d) stable colloidal dispersion of His₆@GN.

la. Time stability of the colloidal dispersion of $His_6@GN$ *and reproducibility of the exfoliation-functionalization process:*

Figure S2. TEM (a) and b)) and optical images (c) and d)) of representative $His_6@GN$ obtained by assisted-exfoliation of expended graphite by NH_2 -His₆-pyrene as-prepared (left) and after 6 months of another sample (d) prepared in the same manner (right), respectively.

1b. $His_6@FLGs$ with a size of few tenths of nanometer to large micrometer sized species demonstrating the efficiency of the process:

Figure S3. TEM images at different magnifications of His₆@FLGs obtained by assistedexfoliation of expanded graphite by NH₂-His₆-pyrene 1.

2. Raman analysis of His₆-@GN

Raman spectra were recorded on a Renishaw Invia Raman Microscope with the 514-nm emission line of an Ar-laser. One drop of the sample suspended in water was deposited on a silicon window and allowed to dry before measurement. Typically, 5 spectra obtained with 15 s irradiation time and 25 mW laser power were averaged.

Figure S4 : Full Raman spectra of the natural and expanded graphite samples before and after treatment with peptides (414 nm excitation).

3. X-ray photoelectron spectroscopy (XPS) spectra of GN

Figure **S5**. C1s XPS spectrum, analyzed in components corresponding to the graphene sheets and the oxygen containing species

This peak is analyzed in components related to non-oxygenated carbon (C-C/C=C) at 284.6 eV, oxygenated carbon (C-O, C=O and O-C=O) at higher binding energies, and the π - π * transition loss peak at ~291 eV.¹ It is evident that the amount of oxygenated functional groups on the FLG surface is relatively low as indicated by the above mentioned Raman Analysis.

(1) Xia, W.; Wang, Y.; Bergstrasser, R.; Kundu, S.; Muhler, M. Appl. Surf. Sci. 2007, 254, 247-250.

4. UV-absorption of NH₂-His₆-pyrene and His₆@GN in water

Absorption spectra were recorded on a Cary 4 (Varian) spectrophotometer.

5. Electrical resistance measurements

The FLG obtained by exfoliation was dispersed for 5 min. in ultrasonication bath at low power in ethanol. A low concentrated suspension (0.05mg. ml⁻¹) was then sprayed by airbrush system onto Si/SiO₂ substrate with the gold circuit prepared before by lithography *(Fraunhofer)* (figure1A in the manuscript). A deposition of the FLG flakes between gold electrodes with the gap of 2.5, 5 and 10 μ m was controlled before and after measurements by SEM microscopy. Two points measurements were then applied in the r.t. with the at the voltage range of \pm 1V.

6. Hierarchical self-assembly of His₆@GN with magnetic Fe₃O₄ nanoparticules

(Protocol: See Methods in the manuscript)

Figure S7 : Size distribution of Fe_3O_4 NPs used for the self-assembly

Additional images of the nanostructured assemblies of His₆@GN/ Fe₃O₄ hybrids.

Figure S8. TEM images at different magnifications of Fe_3O_4 NPs *homogeneously and densely packed on the multivalent platform* $His_6@GN$ obtained by assisted-exfoliation of expanded graphite by NH₂-His₆-pyrene **1**.

7. Magnetic properties of iron-oxide/graphene composite

Figure S9. Magnetization curves of nanoparticles NPs/FLG as a function of applied magnetic field at 300 K and 5 K. Insert: Magnetic interaction between the NPs/FLG sample and the external magnet allowing the easy separation of the solid from the solution.