In-situ Nitrogenated Graphene – Few Layer WS₂ Composites for Fast and Reversible Li⁺ Storage

Dongyun Chen,^a Ge Ji,^a Bo Ding,^a Yue Ma,^a Baihua Qu,^a Weixiang Chen^b and Jim Yang Lee^{*,a}

^a Department of Chemical and Biomolecular Engineering, National University of Singapore, 10

Kent Ridge Crescent, 119260, Singapore

^b Department of Chemistry, Zhejiang University, Hangzhou, 310027, China

Supporting Information

Figure S1 TEM images of WS_2 -graphene composites synthesized by the reflux (a) and hydrothermal (b) methods.

Figure S2 Element maps of nitrogen, tungsten, sulfur and carbon of a WS_2 -graphene composite prepared by the reflux method.

Figure S3 Element maps of nitrogen, tungsten, sulfur and carbon of WS_2 -NGC2 composite prepared by the hydrothermal method.

Figure S4 Coulombic efficiencies of WS₂-NGC1, WS₂-NGC2 and WS₂-NGC5 cycled at 100 mA \cdot g⁻¹.

Figure S5 Coulombic efficiencies of WS₂-NGC2 cycled at different current densities.