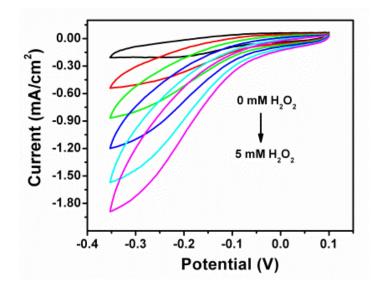
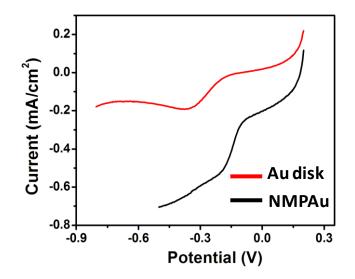
Supplement Information


Tunable Hierarchical Macro/Mesoporous Gold Microwires Fabricated by a Dual Templating Approach and Dealloying Processes

Sirilak Sattayasamitsathit,^a Yonge Gu,^a Kevin Kaufmann,^a Shelley Minteer,^b Ronen Polsky,^c Joseph Wang^{*a}


^aDepartment of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093 USA. E-mail: josephwang@ucsd.edu

^bDepartment of Chemistry and Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 USA.

^cSandia National Laboratories, Department of Biosensors and Nanomaterials, PO Box 5800, Albuquerque, NM 87185 USA.

Figure S1 CVs of H_2O_2 at macro/mesoporous gold wires showing the relation of the increment H_2O_2 concentrations and signal. The macro/mesoporous gold wires were fabricated the same as in Figure 3C.

Figure S2 The Polarization curves of the ORR at macro/mesoporous gold wires (Black) and Au disk electrode (Red) in an O_2 -saturated 0.5 M KOH solution at a scan rate 10 mV s⁻¹.

Table 1 Comparison of electroactive surface area obtained from different preparation conditionsof macro/mesoporous gold structures in N_2 -saturated 0.5 M H₂SO₄.

Prepared conditions	ECSA (cm ²)
Dealloying times (min)	
30	27.7±2.2
60	28.2±2.8
180	29.4±1.8
Au/Ag ratios (% v/v)	
80/20	20.2±2.0
85/15	27.7±2.1
90/10	12.1±1.5
Size of PS particles (nm)	
200	27.7±1.8
500	23.2±2.6