Supporting Information (SI-1)

Fig. SI-1 GC-MS graph of the filtrate obtained in solvothermal reaction after 16h.

Data for Peak -1, 2 and 3

Mass Scan	Peak #	: 47 Ret. Time : (0.125 - 0.325) (15 - 39) B.G. Scan # : (101 - 1: 29 95 (160385)	25)						
Base	Peak	40					1997		
						70	,	20	
			55	1		/3		52	
<hit< td=""><td>20 List></td><td>40 50</td><td>6</td><td>50</td><td></td><td>70</td><td>80</td><td>14</td><td>90</td></hit<>	20 List>	40 50	6	50		70	80	14	90
No	SI Mo	l.Wgt. Mol.Form./Compound Name	CAS No.	Entry	LIB#			13	
1	82	85 C3H3NO2	372-09-8	547	1				
~		Acetic acid, cyano-	229,60,2	1079	Δ				
2	80	89 C3H7NO2	330.03.2	1075	-				
3	80	75 CoHoNO	6168-72-5	411	3				
5	00	1-Propanol, 2-amino-, (.+/)- \$\$ 1-Pro	panol, 2-amino-, D	L- \$\$.+/	-2-Amino	p-1-propan			
		ol \$\$ DL-Alaninol \$\$ DL-2-Amino-1-pro	panol \$\$ DL-2-Am	inopropa	nol \$\$ 1-1	Propanol, 2-ami			11
		no-, (.+)- \$\$.+2-Amino-1-propanol	\$\$ 2-Amino-1-prop	anol # \$	\$				11
4	80	75 C3H9NO	2749-11-3	354	1			1.11	
		1-Propanol, 2-amino-, (S)-	202 72 7	1007	1			115	1. 34
5	80	89 C3H7NO2	302-72-7	1087	4				1 1
c	00		56-41-7	1083	4			1 1	13
6	80	Alanine	00 41 /	1000					1
7	80	75 CaHoNO	78-91-1	406	3		,	r is int	1
,	00	1-Propanol, 2-amino- \$\$ Alaninol \$\$.	oetaPropanolamin	ne \$\$ 1-H	ydroxy-2-	aminopropane		6 1 73	i
		\$\$ 1-Methyl-2-hydroxyethylamine \$\$ 2	2-Amino-1-propano	1 \$\$ 2-An	nino-2-me	thylethanol \$\$ 2		,	1
		Aminopropanol \$\$ 1-Amino-2-propan	ol \$\$ 2-Aminoprop	yl alcoho	1 \$\$ 2-Hyd			\$. P .	1
	~~	\$\$ Aliphatic amine \$\$ Isopropanolar	10 \$\$ MIPA \$\$ M	onoisopro 350	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	tile åå		0.1.0	1
8	80	1 Bronand 2 amino \$\$ bets Propar	olamine \$\$ Alanin	ol \$\$ 1-H	vdroxv-2-	aminopropane			1
		\$\$ 1-Methyl-2-hydroxyethylamine \$\$	-Amino-1-propano	1 \$\$ 2-Ar	nino-2-me	thylethanol \$\$ 2		1. 1	
		-Aminopropanol							
9	80	89 C4H11NO	37143-54-7	883	2				
		2-Propanamine, 1-methoxy- \$\$.+/2	-Amino-1-methoxy	oropane					
10	80	89 C3H7NO2	56-41-7	867	2	lania agid			
		Alanine \$\$ L-Alanine \$\$ Alanine, L- \$\$	alphaAlanine \$\$	alphaA	Aminoprop				
		\$\$ (S)-Alanine \$\$ L-alphaAlanine \$	LalpnaAminopi Aminopropionic ac	id \$\$ Pr	nanoic a	cid. 2-amino- \$			
		e \$\$ L-2-Aminopropanoic acid \$\$ L-2-	CH3CH(NH2)COO	H \$\$ (S)-	2-Aminop	ropanoic acid			
		φ Fropanoic aciα, z-annico, (ο)- φφ E-	0.1001(1112)000	···· + + (-)	P				

Library Name

Juan #		1						
Base Peak	: : 45.10 (2175140))						
45							1	
1 miles								
	59 74 91 106 122				227 238		283	3
<hit list=""></hit>	50 100	150		200	1 . 1 . 1	250	1	- 1
No SI M	Nol.Wgt. Mol.Form./Compound Name	CAS No.	Entry	LIB#				
1 98	60 C3H8O Isopropyl Alcohol	67-63-0	147	4				
2 97	60 C3H80	67-63-0	124	1				
3 97	60 C3H80	67-63-0	122	1				
4 96	60 C3H80	67-63-0	123	1				
5 96	60 C3H80	67-63-0	146	4				
6 96	Isopropyl Alconol	67 62 0	141	2				
	Isopropyl Alcohol \$\$ 2-Propanol \$\$ sec-Pro antin \$\$ Avantine \$\$ Combi-Schutz \$\$ Dim I \$\$ Isopropanol \$\$ Lutosol \$\$ Petrohol \$\$ yl Alcohol \$\$ iso-C3H7OH \$\$ 2-Hydroxypro \$ Propan-2-ol \$\$ i-Propylalkohol \$\$ Alcohol \$\$ Alcohol \$\$ Alcohol	pyl Alcohol \$5 ethylcarbinol Propol \$\$ PF pane \$\$ Prop , rubbing \$\$ / uad DMCB \$5	§ Alcojel \$ \$\$ Harto RO \$\$ Tak ane, 2-hy Alcolo \$\$ § iso-Prop	\$ Alcosolve 2 \$\$ A sol \$\$ Imsol A \$\$ Is ineocol \$\$ 1-Methy droxy- \$\$ sec-Propa Alcool isopropilico ylalkohol \$\$ Isopro	y soho ileth anol \$ pyl			
7 96	60 C3H8O Isopropyl Alcohol \$\$ 2-Propanol \$\$ n-Propa Alcosolve 2 \$\$ Avantin \$\$ Avantine \$\$ Com Imsol A \$\$ Isohol \$\$ Isopropanol \$\$ Lutos ol \$\$ 1-Methylethyl Alcohol \$\$ iso-C3H7OH \$\$ sec-Propanol \$\$ Propan-2-ol \$\$ i-Propyl cool isopropilico \$\$ Alcool isopropylique \$\$ o	67-63-0 nn-2-ol \$\$ sec bi-Schutz \$\$ ol \$\$ Petroho \$\$ 2-Hydroxy alkohol \$\$ Alo Alkolave \$\$ A	126 Propyl Al Dimethylo I \$\$ Prop ypropane cohol, rub yrquad DM	2 cohol \$\$ Alcojel \$\$ arbinol \$\$ Hartoso ol \$\$ PRO \$\$ Takin \$\$ Propane, 2-hydr bing \$\$ Alcolo \$\$ A ACB \$\$ Iso-propyla	I \$\$ eoc roxy- I Ik			
8 95	86 C5H10O	625-31-0	713	2				
9 94	4-Penten-2-ol \$\$ 1-Penten-4-ol \$\$ 4-Hydro> 86 C5H10O	ypent-1-ene \$ 625-31-0	\$ CH2=C 891	HCH2CH(OH)CH3 4				
10 04	4-Penten-2-ol	57 55 ¢	070					
10 94	Propylene Glycol \$\$ 1,2-Propanediol \$\$ alp ethylethyl glycol \$\$ Methylethylene glycol \$ e \$\$ 1,2-Dihydroxypropane \$\$ 1,2-Propylen diol \$\$ Propane-1,2-diol \$\$ Trimethyl glyco ,2-Propylenglykol \$\$ Solar winter ban \$\$ Se ol \$\$ Ucar 35 \$\$ Solargard P	57-55-6 phaPropylene \$ Monopropyl e Glycol \$\$ 2 i \$\$ Dowfrost ntry Propylen	3/8 ene glycol \$5 Hydroxyr \$\$ Propy e Glycol \$	2 Methyl glycol \$\$ M I \$\$ PG 12 \$\$ Sirle propanol \$\$ 2,3-Pro lene glycol usp \$\$ 3 \$ Isopropylene glyc	∬ n pane I			

ſ		: (173 - 182) B.G. Scan # : (: 42 65 (6475510)	17) 123 · 139)					
	43	1 12.00 (04) 0010)							
		74							
		59							
Ļ	, lle	89 108 13	7	180			291		38
Hit L	ist>	50 100	150	200	1.1.1.1	250	300	350	1 1 1 1
0	SI M	ol.Wgt. Mol.Form./Compound Nan	пе	CAS No	Entry	IIR#			
	96	74 C3H6O2		79-20-9	415	4			
		Acetic acid, methyl ester							
	94	74 C ₃ H ₆ O ₂		79-20-9	313	1			
		Acetic acid, methyl ester							
	94	74 C3H6O2		79-20-9	312	1			
	02	Acetic acid, methyl ester		70.00.0					
	93	74 C3H6O2		/9-20-9	311	1			
	93	74 CoHcOo		70.00.0	200	2			
	50	Acetic acid methyl ester \$\$ Met	hul acotate	79-20-9 \$\$ Devotor \$	300 C Torotor	C S	0000 000		
		hvl ethanoate \$\$ Acetate de me	hvle \$\$ M	thyl acetic est	or \$\$ Mo	thylacotaat	CIIS \$\$ IVIEL		
		acetat \$\$ Methyle (acetate de) \$	\$ Methyle	ster kiselinv oc	tove \$\$ N	letile (acetat	o di)		
		\$\$ Ethyl ester of monoacetic aci	d \$\$ Metile	\$\$ UN 1231	\$\$ Methy	l ester of ace	tic acid	1	
		\$\$							
	92	74 C3H6O2		79-20-9	316	2			
		Acetic acid, methyl ester \$\$ Dev	oton \$\$ Me	thyl acetate \$	\$ Teretor	\$\$ CH3COC	CH3 \$\$ Met		
		nyi ethanoate \$\$ Acetate de met	hyle \$\$ Me	thyl acetic est	er \$\$ Me	thylacetaat \$	\$ Methyl		
		\$\$ Octan motulu \$\$ Ethyl actor	\$ Methyles	ster kiseliny oct	tove \$\$ N	letile (acetat	o di)		
		r of acetic acid	n monoace	tic acid \$\$ Me	tile \$\$ U	N 1231 \$\$ N	lethyl este		
	00	74 CoHeNoO		1068.57.1	351	2			
	30	Acetic acid bydrazide \$\$ Acethy	drazide \$\$	Acetohydrazic	1e \$\$ Ace	tvl hydrazid	e \$\$ Acot		
	90		anid to C	NT-61241 \$\$	Hvdrazin	e. Acetvl- \$\$	Monoacetyl	and the second state of th	
	90	ylhydrazine \$\$ Ethanehydrazonia	aciu pp c				· · · · · · · · · · · · · · · · · · ·		
	90	ylhydrazine \$\$ Ethanehydrazonic hydrazine \$\$ N-Acetylhydrazine	\$\$ NSC 53	155 \$\$ 374 \$	Acetic H	ydrazide \$\$	Hydrazid ky		
	90	ylhydrazine \$\$ Ethanehydrazonia hydrazine \$\$ N.Acetylhydrazine seliny octove \$\$	\$\$ NSC 53	155 \$\$ 374 \$	Acetic H	iydrazide \$\$	Hydrazid ky		
	90 90	ylhydrazine \$\$ Ethanehydrazonia hydrazine \$\$ N-Acetylhydrazine seliny octove \$\$ 74 C3H6O2	\$\$ NSC 53	155 \$\$ 374 \$ 116-09-6	\$ Acetic H 418	ydrazide \$\$ 4	Hydrazid ky		
	90	ylhydrazine \$\$ Ethanehydrazonia hydrazine \$\$ N-Acetylhydrazine seliny octove \$\$ 74 C ₃ H ₆ O ₂ 2-Propanone, 1-hydroxy-	\$\$ NSC 53	155 \$\$ 374 \$ 116-09-6	Acetic F 418	ydrazide \$\$ 4	Hydrazid ky		
	90 90 89	ylhydrazine \$\$ Ethanehydrazonia hydrazine \$\$ N-Acetylhydrazine seliny octove \$\$ 74 C3H6O2 2-Propanone, 1-hydroxy- 74 C3H6O2 2. Propanone, 1-hydroxy-	\$\$ NSC 53	1155 \$\$ 374 \$ 116-09-6 116-09-6	\$ Acetic # 418 318	ydrazide \$\$ 4 1	Hydrazid ky		
	90 90 89 88	ylhydrazine \$\$ Ethanehydrazonia hydrazine \$\$ Ethanehydrazonia hydrazine \$\$ N-Acetylhydrazine seliny octove \$\$ 74 C3H6O2 2-Propanone, 1-hydroxy- 74 C3H6O2 2-Propanone, 1-hydroxy- 101 C4H7NO2	\$\$ NSC 53	1155 \$\$ 374 \$ 116-09-6 116-09-6	\$ Acetic 418 318	ydrazide \$\$ 4 1	Hydrazid ky		

Library Name

		. +2.50 (85528)						
		43						
			61					
	L	· · · · · · · · · · · · · · · · · · ·	····	· · · · · · ·		87		
Hit	List>	40 50	60	70	80	90	100	110
lo	SI M	ol.Wgt. Mol.Form./Compound Name	CAS No.	Entry	LIB#			
1	96	102 C5H10O2	108-21-4	2007	4			
~	0.5	Acetic acid, 1-methylethyl ester						
2	96	102 C5H10O2	108-21-4	1268	1			
2	OF	Acetic acid, 1-methylethyl ester	entralis. I a manufacture					
5	90	Acetic poid 1 methylathyl actor 66	108-21-4	1719	2			
		\$\$ 2-Acetovypropage \$\$ 2 Propul	Acetic acid, isopropyl	ester \$\$	sopropyl ace	etate		
		Isopropile(acetato di) \$\$ Isopropul	ethanoato \$\$ Iconror	H(CH3)2:	Acetate d	isopropyle \$\$		
		cetaat \$\$ Isopropylacetat \$\$ Isopro	nile \$\$ Isopropul \$\$	Isopropula	e a) a sopi	ropyia		
		e \$\$ UN 1220 \$\$ Isopropyl ester of	facetic acid	130pi opyie	SLEI KYSEIIIIY	OCLOV		
1	95	102 C5H10O2	108-21-4	1269	1			
		Acetic acid, 1-methylethyl ester		1200	+			
5	95	102 C5H10O2	108-21-4	2008	4			
		Acetic acid, 1-methylethyl ester						
>	93	102 C5H10O2	108-21-4	2222	З			
		Acetic acid, 1-methylethyl ester \$\$	Acetic acid, isopropyl	ester \$\$ I	sopropyl ace	etate		
		\$\$ 2-Acetoxypropane \$\$ 2-Propyl a	acetate \$\$ CH3COOCI	H(CH3)2 \$	\$\$ Acetate d	isopropyle \$\$		
		sopropile(acetato di) \$\$ isopropyi	ethanoate \$\$ Isoprop	pyl(acetate	e d') \$\$ Isopr	ropyla		
		ster of agetic acid \$\$ can Broud ac	pylester kyseliny octo	we \$\$ UN	1220 \$\$ Iso	propyl e		
		vl ester \$\$	erare på so-Propyrace	etate \$\$ A	cetic acid, 2-	-prop		
,	93	102 C5H10O2	108.21.4	1270	1			
		Acetic acid, 1-methylethyl ester	100-21-4	1270	T			
;	93	102 C5H10O2	108-21-4	2009	А		ALC: A REAL PROPERTY AND	
		Acetic acid, 1-methylethyl ester	the strength and	2005				
	92	102 C4H6O3	108-24-7	1680	2			
i.		Acetic acid, anhydride \$\$ Acetic and tyl ether \$\$ Acetyl oxide \$\$ Ethanoi	nydride \$\$ Acetic oxic c anhydride \$\$ Hydro	de \$\$ Acet xybiacety	yl anhydride \$\$ (CH3CO	\$\$ Ace)20 \$\$ Et		
		hanoic anhydrate \$\$ Acetanhydride	\$\$ Anhydride aceticu	le \$\$ Anh	drid kvselim	v octove 3		
	120	hanoic anhydrate \$\$ Acetanhydride \$ Anidride acetica \$\$ Azijnzuuranhy \$ UN 1715 \$\$ Acetyl acetate	\$\$ Anhydride acetiqu dride \$\$ Essigsaeure	ue \$\$ Anhy anhydrid \$	drid kyseling \$\$ Octowy be	y octove \$ ezwodnik \$		

```
Data : BBK_1.D01
 Mass Peak # : 13
                   Ret. Time : ( 3.842 - 4.050 )
 Scan #
           :( 461 - 486 ) B.G. Scan #:( 496 - 510 )
 Base Peak : 44.00 (
                        23828)
          11
               59
                                                                        218
                                                                                                                              368
            50
                             100
                                               150
                                                                  200
                                                                                    250
 <Hit List>
                                                                                                      300
                                                                                                                        350
 No
       SI Mol.Wgt. Mol.Form./Compound Name
                                                        CAS No.
                                                                    Entry
                                                                             LIB#
 1
       93
              59 C2H5NO
                                                         60-35-5
                                                                      117
                                                                                 3
             Acetamide $$ Acetic acid amide $$ Ethanamide $$ Methanecarboxamide $$ CH3CONH2 $$ NCI
              -C02108 $$ Amid kyseliny octove $$
 2
       92
              59 C2H5NO
                                                         60-35-5
                                                                      103
                                                                                 2
             Acetarnide $$ Acetic acid amide $$ Acetimidic acid $$ Ethanamide $$ Methanecarboxamide
              $$ CH3CONH2 $$ NCI-C02108 $$ Amid kyseliny octove
 З
       90
              59 C<sub>2</sub>H<sub>5</sub>NO
                                                         60-35-5
                                                                      102
                                                                                 1
             Acetamide
 4
       89
             116 C2H4N4O2
                                                        123-77-3
                                                                     3175
                                                                                 2
             Diazenedicarboxamide $$ Formamide, 1,1'-azobis- $$ .delta.(Sup1,1')-Biurea $$ Azobis
             carbonamide $$ Azobis carboxamide $$ Azobis formamide $$ Azodicarbamide $$ Azodica
             rboamide $$ Azodicarbonamide $$ Azodicarboxarnide $$ Azodicarboxylic acid diamide $$ A
             zodiformamide $$ Celogen AZ $$ Celogen AZ 130 $$ Celogen AZ 199 $$ ChKhZ 21 $$ ChKhZ
             21R $$ Ficel EP-A $$ Genitron AC $$ Genitron AC 2 $$ Genitron AC 4 $$ Kempore R 125 $
             $ Kempore 125 $$ Lucel ADA $$ Pinhole AK 2 $$ Porofor ADC/R $$ Porofor ChKhZ 21 $$ Po
 5
      89
              72 C3H4O2
                                                        692-45-5
                                                                     253
                                                                                 2
             Formic acid, ethenyl ester $$ Formic acid, vinyl ester $$ Vinyl formate $$ Vinyl meth
             anoate $$ Vinylester kyseliny mravenci
 6
      87
             180 C3H12N6O3
                                                        593-85-1
                                                                    28864
                                                                                 3
             Guanidine carbonate $$ Guanidinium carbonate $$ Carbonic acid, compd. with guanidine
             (1:2) $$ Bisguanidinium carbonate $$ Diguanidinium carbonate $$ Bis(triaminomethyl) c
             arbonate # $$
 7
      87
             137 C2H4BrNO
                                                         79-15-2
                                                                     9603
                                                                                 3
             N-Bromoacetamide $$ Bromoacetamide $$ Acetamide, N-bromo- $$
             74 C3H6O2
8
      85
                                                      60456-23-7
                                                                     315
                                                                                 2
             Oxiranemethanol, (S)- $$ (S)-(-)-Glycidol
             74 C3H6O2
9
      85
                                                       556-52-5
                                                                     321
                                                                                 2
             Glycidol $$ Oxiranemethanol $$ 1-Propanol, 2,3-epoxy- $$ Allyl alcohol oxide $$ Epihy
            drin alcohol $$ Glycide $$ Glycidyl alcohol $$ 1 Hydroxy 2,3 epoxypropane $$ 1,2 Epox
            y-3-hydroxypropane $$ 2-(Hydroxymethyl)oxirane $$ 2,3-Epoxy-1-propanol $$ 3-Hydroxy-1
             ,2-epoxypropane $$ 3-Hydroxypropylene oxide $$ Hydroxymethyloxirane $$ 2,3-Epoxypropa
            nol-1 $$ Methanol, oxiranyl- $$ Monoepoxide glycidol $$ NCI-C55549 $$ Oxiranylmethano
            1 $$ 2,3-Epoxypropanol
10
      85
             74 C3H6O2
                                                       556-52-5
                                                                     371
            Glycidol $$ Oxiranemethanol $$ 1-Propanol, 2,3-epoxy- $$ Allyl alcohol oxide $$ Epihy
            drin alcohol $$ Glycide $$ Glycidyl alcohol $$ 1 Hydroxy-2,3 epoxypropane $$ 1,2 Epox
            y-3-hydroxypropane $$ 2-(Hydroxymethyl)oxirane $$ 2,3-Epoxy-1-propanol $$ 3-Hydroxy-1
            2-epoxypropane $$ 3-Hydroxypropylene oxide $$ Hydroxymethyloxirane $$ 2,3-Epoxypropa
            nol-1 $$ Methanol, oxiranyl- $$ Moncepoxide glycidol $$ NCI-C55549 $$ Oxiranylmethano
            1 $$ 2,3-Epoxypropanol $$ Hydroxymethyl ethylene oxide $$ Epoxypropyl alcohol $$ 2-Ox
  Library Name
```

The above GC-MS analysis clearly shows the following major By-products

- 1. Methyl acetate
- 2. Ethyl acetate
- 3. Methyl propanate
- 4. Isopropyl acetate
- 5. Acetic acid
- 6. Acetamide
- 7. Hydrazine
- 8. 2-methyl isopropanoic acid
- 9. Isopropamide

Supporting Information (SI-2)

When the solvothermal reaction was performed without guanidine carbonate for 16 hrs the clusters of 50-60nm spherical nanoparticles have been formed.

Fig.SI-2 FESEM Images of the sample synthesized without using guanidine Carbonate.

•

Supporting Information SI-3

Table SI-I Photocatalytic activity of reported photocatalysts and N-TiO ₂ marigold flower
for hydrogen production via H ₂ S splitting.

_		Photocatalytic					
Sr.	Catalyst	activity	Reference				
No.		$(umol h^{-1}g^{-1})$					
1.	CdS-TiO ₂	980	International Journal of Hydrogen Energy 32 (2007) 4786 – 4791				
	CdS		G M Hongijan et al: L of catalysis:				
2	Nanoparticles	180-1460	2008, 260, 134-140				
3	Cu doped ZnO	1931	K.G. Kanade et al. Materials Chemistry and Physics 102 (2007) 98–104				
4	ZnBiGaO4	6060	Kale et al, Int. J. Energy Res. 2010; 34, 404–411.				
5	ZnFe2Ta ₂ O ₉	4640	Subramanian et al, Bull. Korean Chem. Soc. 2007, Vol. 28, No. 11,2089.				
6	CuAlGaO ₄	3616	Biswas et al,Catalysis Communications 12 (2011) 651–654				
7	ZnIn ₂ V ₂ O ₉	4695	Mahapure et al, Journal of nanoscience and nanotechnology, 2011, 11, pp. 6959				
8	Fe ₂ O ₃	6266	Chaudhari et al, Dalton Trans., 2011, 40, 8003.				
9	V ₂ S ₃ ,VS ₄ /RuO ₂ ,Pt	5.64	S. A Naman, Int. J. Hydrogen Energy, 1997,22,783-789				
	B/N co-doped TiO ₂		Y Li. et al Appl. Surf. Sci. 2008, 254,				
10	(Water splitting)	34.9	6831				
11	In/N co-doped TiO ₂	75	Sasikala et. al. Appl. Catal., A 2010, 377,				
11	(Water splitting)	75	47.				
12	N-TiO ₂	2950	Chen Yeo (2010) The 13th Asia Pacific				
12	(Water splitting)	3859	Congress October 5-8, 2010, Taipei				
12	N-TiO ₂	200	J. Yuan et al, Int. J. Hydrogen				
15	(Water splitting)	300	Energy, 2006, 31, 1326.				
14	Present catalyst N-TiO ₂	8800	Present catalyst				